EOサンプリングを用いたタイミン グ・ドリフト制御によるHHGシー ド型EUV-FELの高ヒット率化

Hiromitsu TOMIZAWA, RIKEN XFEL Division

On behalf of all the staffs contributed to HHG-seeded EUV-FEL (SCSS) and improvements of SACLA

SASE光のシード化の目的

SASE FELからシードFELへ

- 第二世代FEL
 - 空間だけなく時間方向でもコヒーレントな光源とする。
 - スペクトルの狭帯域化と中心波長の安定性。 (現在の応用ではもっぱら、この特性を利用する実験が多い)
- (硬X線)HXR領域のシーディング
 - Self-seedingという方式が用いられるようになり、現在 これを超える方式は提案されていない。
- (軟X線)SXR領域のシーディング
 - HHG(光学レーザ)をシード光として用いて、その後の 短波長化はHGHGなどを用いることで達成する。

各種シーディング法の比較

 シード光の短波長化

 HHG:高出力レーザーによる高調波発生
 HGHG:マイクロバンチ高次成分の利用
 シード光と電子ビームの同期精度?
 数nmが限界?

 セルフシーディング

 飽和前のSASE光を分光器にて単色化し、 シード光として利用
 短波長限界、同期精度の問題なし
 GeV電子ビームでは長大なスペースが必要

Hard X-ray Self Seeding (HXRSS)

•Hard X-ray Self Seeding

- SASE型FELの欠点である、不完全な時間コ ヒーレンスを改善するシーディング手法を 、硬X線領域で実現する試み
- Self Seedingは元々軟X線でシーディング を実 現するためにDESYグループによって 提案され た手法で、同期の問題を回避でき るが、そのま ま硬X線に適用するのは若干 非効率
- より簡便な方法が同グループから提唱され
- 、これがLCLS、SACLAで採用へ。

SACLAでのシードFELの目標と戦略(術)

- 目標 (Mission)
 - 常時シード化したFELを発振させ、利用実験に供する。
 - SXRのシード技術を確立する(SCSS増強・移設後にWater Windowまで達成する)。
- 戦略 (Strategy)
 - HHGパルスと電子バンチの3次元的重なりの最適化と保持 (正確には、6次元位相空間でのフル・マッチングが必要)
- 戦術(Tactics)
 - HHG(レーザ)、加速器、タイミングシステムの総合的安定化
 - EOタイミング計測によるドリフトの制御による高ヒット率化

History of Seeding Experiments

	Date	Event	Condition	Reference
	June 2006	The first SASE amplification with our new machine concept	250 MeV, 49nm	
	Dec. 2006	Seeding at 160 nm	150 MeV, HHG 5 th	G. Lambert et al., Nat. Physics 4, 296 (2008)
	Sept. 2007	SASE saturation	250 MeV, 50~60nm	T. Shintake et al., Nat. Photonics. 2, 559 (2008)
	Oct. 2010	Seeding at 61 nm	250 MeV, 300 fsec HHG 13 th	T. Togashi, et al., Opt. Exp. 19, 317 (2011)
	March 2011	The first test of Arrival time monitor (relative timing btw. e-bunch and HHG with EO sampling)		H. Tomizawa, BIW2012, Newport News, VA (2012)
	July 2012	Seeding at 61 nm (hit rate: ~30%)	250 MeV, 600 fsec HHG 13th	H. Tomizawa, et al., LINAC2012, Tel-Aviv (2012)
SS	July 2012	Experiments with stabilized seeded FEL at 61 nm		to be submitted

Seeding at SCSS Test Accelerator

SCSS Test Accelerator

- Constructed and operated to demonstrate the concept of SACLA (250MeV, 60nm)
- Just in front of the undulator section, a chicane has been installed to inject a laser beam for seeding experiments

シードEUV-FELの共同開発&利用実験チーム

Task force in our collaboration for HHG-seeding

Supports for this projects: •RIKEN/JASRI XFEL project •SCSS test accelerator operation team (Engineers) Financial supports : •RIKEN extreme photonics (Dr. Midorikawa)

•MEXT X-ray free electron laser utilization research (Prof. Kaoru Yamanouchi, The University of Tokyo), *"Pump and probe experiment of atom, molecule and cluster by XFEL light and advanced laser light"*

Japan Atomic Energy Agency, Quantum Beam Science Directorate M. Aoyama, K. Yamakawa, Synchrotron SOLEIL

Marie E. Couprie

Experimental setup: HHG and injection

Seeding results at 61 nm in 2010 (2)

Improvement of Hit Rate (~2012) (1)

- Bunch length stretched (0.3⇔0.6 psec)
- Arrival time monitor by means of EOsampling implemented

Improvement of Hit Rate (~2012) (2) Relative-timing EOS locking system Ti:sa lase hire EOS arrivel timing monitor Loosely-focusing lens DAZZLER AO-modulator Glass block stretcher Half wave & Polarize Polarizer Fiber spectrometer Delay OTR & Fundamental HHG driver Streak camera Gas monitor detector To Experimental station harmonic arator mirror Spectrometer OTR Screens MCP Gas cell Undurator 2 Electron Undurator 1 EQ Pair of concave (R = 8)t-coated rror Spectrometer 8 m SiC harmonic separator C band accelerator OTR &HH rror Electron MCP MCP EUV CCD camera CCD camera CCD camera Magnetic chicane 61nm-2nJ HHG@Undulator

Principle of EOS (Electro-optic Sampling)

EOサンプリング法によるタイミング制御

- 高分散ガラスブロック(n= 1.96, L=20 cm)でパルスをチャープ(175 fs \rightarrow ~14 ps)
- 同期レーザーと電子ビームのタイミングの観測方法
 - ▶ ストリークカメラによる観測。
 - ▶ オシロスコープでPDとCurrent Transferのタイミング差を観測。
- P1, P2の角度をEO信号が最も強くなるように調整。
- 同期レーザーのタイミング
 - ➢ EO信号のピークとArガスモニターを参照してCandoxで調整。

Timing feedback with EO

Improvement of Hit Rate (3)

Improvement of Hit Rate (3)

Seeded FEL Performances (3)

The correlation data plot between the normalized intensity and central wavelength for 10000 shot data

Future Perspective

- SCSS test accelerator is going to be decommissioned in June 2013
- Accelerator components moving to BL1@SACLA (SCSS+)
 - Dedicated beamline to EVU & SXR regions
 - Start with 400 MeV & 30~50 nm, to be extended to 1.4 GeV & 3 nm
- Seeding method under exploration (self seed, HHG, HGHG,..)

Seeding Option at SACLA

- Upgrade program at SACLA for HXRseeding in progress
- Successful demonstration of the selfseeding scheme at LCLS urges us to go ahead with the same (?) scheme
- Numerical study to optimize the selfseeding configuration finished (preliminary)

SSSFEL12, 10-12 Dec. 2012

Current Status toward Self-Seeding

#09

#09 Segment has been moved to #19 to install the self-seed unit
Four dipole magnets have been moved to #09 to create a chicane
Monochromator design under progress

Summary

- In SACLA, two seeding options have been explored intensively :
 - EUV and SXR-region: HHG Seeding– HXR-region: Self seeding
- Recent R&D to improve the hit rate at the SCSS test accelerator has proven the capability of HHG seeding
- Commissioning for HXR-self seeding is scheduled this September, after installation of the monochromator