可変形ミラーによる レーザビーム
整形

2004年11月5日 第二回高周波電子銃研究会

福井県工業技術センター 松井多志
株式会社ホクシン 堤明、三枝克之、中川
高輝度光科学研究センター 冨澤宏光
産業技術総合研究所 板谷太郎

はじめに

スプリング8 電子銃用高品質光源 ・空間プロファイル ・時間プロファイル

福井県工業技術センター レーザ加工用光源 ・空間プロファイル

(Deformable mirror)を 用いたレーザビーム整形

制御自動化システム

商品化

可変形ミラー

・ミラー特性評価

・ミラー制御手法

発表内容

1. 目的

- 2. 可変形ミラー動作の構成
- 3. 性能評価実験
 薄膜変位量測定 / ビーム形状変化
- 4. 制御自動化の方策
- 5. 課題

目的

レーザビームの空間プロファイルを可変形 ミラーを用いて改善・整形するシステムの 開発を行いたい。

このビーム整形のため、可変形ミラーの性 能評価を行い、制限事項やビーム整形可 能な範囲を検討する。

可変形ミラーの種類

静電引力型 (メンブレン型) ミラー背面に電極配置 電気的吸引力でミラー面吸引 電極 <u>多数</u> (19~ 60ch) 直径 小型 (10~ 30mm) 価格 高価 レーザビーム整形

ピエゾアクチエータ型 ミラー背面にピエゾアクチ設置 ピエゾ伸縮でミラー面形状変化 価格:低価格/高価?

可変形ミラー(メンブレン型)

- 反射面の形状が変更可能なミラー (Deformable Mirror)
- ビーム整形に期待される
- ミラー面は薄膜で構成される
- 薄膜背面の電極への高電圧印加による静電引力でミラー動作

ビーム形状制御のため、この電極に印加する電圧値を指令する

構成品:制御用PC (ISA内蔵)、制御装置、高電圧電源 (~250V)

主な構成品

Dミラー ;OKO社製59chDミラー 制御用 PC (ISA内蔵) JSA - OKO社製×3 ハイボルテージ回路 ;光貿易社製制御BOX 高電圧電源 (~250V印加);高砂製GP350

制御用ソフトウェア(手動)

電極CH番号に対する指定電圧値をDACに送信し Dミラーを動作

現状の手動制御を、自動制御にしてより高速化を図る商品を開発

変位量評価(干渉編)

斜め入射式干渉計による測定

BNテクノロジー社 GI20 (ジンバル治具付き)

Dミラー測定用各種治具 (産総研テクニカルセンター)

この装置を用いて、

干渉縞数を測定

jpeg / bmp / avi等のデータを取得

斜め入射式干渉計

GI20平坦度測定装置:2ジロンの変位が干渉縞に表出

干涉縞測定

全電極に最大電圧を与えた場合のGI20画面

全極 (01~59ch) 電圧250V (制御指令値)

電圧-ミラー変位測定

実験電圧供給手順

供給電圧は最大電圧 (ソフト250V)に初期設定

Dミラー制御用PCにて、全電極に最大電圧 (ソフト上250V)を供給、電圧印加

高電圧回路の供給電圧 (可変ボリューム)にて供給電圧を変化させる

250V 0V 250V 0V 250V (電圧値はテスタにて高電圧電源の出力を測定) 光貿易制御BOXの出力は、ソケット背面にて約90%であった

ソフト上250Vの指令時において、ソケット背面223V

平均值

ミラー2(59ch型)

基礎特性(全極に電圧印加)

- 変位Dと電圧Vの関係 ; $D = A \cdot V^2$ 、 A:const
- 最大変位量 約7ミクロン(ジー2),但し精度は2ミクロン以下
- 応答性約1秒(ラー1、産総研19ch)約4秒(ラー2,59ch)
- 干渉縞数:電圧30~50V程度で確認不可能(低電圧時)
- ・ DOWN / UP時のヒステリシス等は確認不可能(誤差大)

三次元形状測定装置による測定

実験に用いた主な機能

- 三鷹光器社製NH-3SP; He-Neレーザ使用AF焦点式距離測定方式 分解能(Z軸)1nm 再現性10nm (但し100倍対物レンズ使用時) ・面勾配補正機能; ミラー面の傾き補正に使用 ・エッジ検出機能; ミラー周辺エッジ検出に使用
- ・中心部検出機能;ミラーエッジから中心検出に使用

ミラ-3(37ch)中心部測定

 $D = A \cdot V^2$, A:const

測定点毎の電圧ー変位特性

何れの測定点でもほぼ二乗則

中心からの位置と電圧から変位量計算

ミラー半面で表現

測定部分 (59ch型)

全電極電圧印加 (59ch)

OKOのミラーの場合、電圧無印加で結果は全極0Vと重複 225Vと250Vの曲線が重なっている事から、変位量の飽和が見られた 最大変位は、全極250Vで、約8.4ミクロン(1m)

電極群に電圧印加 (37ch)

周辺近傍の第四層に電圧印加の場合、盆状に凹となる

中心部分は凸にならない

単レイヤー電圧印加 (59ch)

第一層(中心電極 = 1ch)から、第六レイヤーまで、単レイヤーのみに電圧を最大 電圧(250V)印加した状態です。変位量は、全極全レイヤー印加に比して少ない。

マルチレイヤー電圧印加の場合

Layer03 + 05 印加レイヤ:03,05

変位量は、単レイヤー印加に比して大

ビーム形状変化

1.ビーム変形状態

実験に用いた可変形 ミラー OKOテック 59 ch型 (同軸電極)

He-Neレーザ光をDミラーで制御

ビーム変形状況

e8r1/5

all250V

modified

ビーム変形 (動画)

全極に最大電圧 (250V)を印加した場合の変化

・単極に順次最大電圧 (250V)を印加した 場合の変化

断面形状変形の例

要プロファイルの詳細測定

評価まとめ

印加電圧 - 変位量の関係は二次曲線 $(D = A \cdot V^2)$

可変形ミラー中心部と周辺部には同電圧印加で変位量の差 (D)が発生

アンカ個定錨の影響

全電極に電圧印加時と単極電圧印加時の変位量の差 (D)が発生

周辺薄膜の張力や静電容量の影響

可変形ミラー各部変位量は中心からの半径と印加電圧 (r V)に関係

各ポイントでの数値計算 今後トライ

薄膜変位量が最大で数ミクロン

多重反射等の検討

周辺部のみの電極群に電圧印加の場合、中心層も盆状に窪み、中心部のみの突起は現在の構造では困難。薄膜一部の突起が出来ない

強度分布の整形、波面の整形ともに、他の光学的素子との併用

レーザ光の変形はある程度は出来る

三一面の変位量は少ない。短波長光に適。

自動化について

パラメーク設定 真円度、肩立ち上がり 平坦度 CCDカメラと制御機器の連動 クローズドレープの系 パラメータ重み付け 中心部、周辺部の重みにより、 可変形ミラー動作変動範囲の限定

クローズドの制御系

課題

変位量:充分な強度等の補正が出来るか? 多重反射?

ミラー形状:凹凸が出来ない ビーム広がり角+可変形ミラー?

自動制御:電圧設定の振り方 検討中 (山登り方法 + 複数初期条件によるチカラわざ)

測定系:連動させるCCDプロファイラ 試作予定(制御連動のため)

付録

59ch ミラー用保護治具

産総研テクニカルセンターに依頼し、DM保護治具を製作しました。

目的

保護 (CaF2蓋付き)

乾燥窒素パージ(インレット、アウトレット、流量計付き) 図面等の詳細は N2P保護治具.ppt」参照かた

(産総研テクニカルセンターの多大なるご協力に感謝します)

再現性検討

37ch型

再現性検討

37ch型