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Lawson introduced the beam envelop equation(*), though it assumes condi-
tions that beam is almost continuous longitudinally, or energy of the beam is
high enough and longitudinal space charge force is not necessary to be taken
account. Thus, this envelop equation is not able to be used for short bunched
beam like RFguns.

In this paper, we derive a beam envelop equation which are able to deal with
low energy and short bunched beam. Note that we discuss only space charge
force originated beam envelop trajectory.

1 Transverse Beam Envelop Equation

1.1 Electromagnetic Fields Produced by Pencil Beam

Electric fields, which are produced by an electron in linear uniform motion with
velocity v are generally given as follows,
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E =
1

4πε0γ2

−er
[
|r|2 − |v×r|2

c2

]3/2
. (1)
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where, r is a vector from the present point of an electron, γ is relativistic
factor of the electron.

Firstly, we start from Figure 1 in the rectangular coordinates, where the
electron moves in uniform motion along the z-axis. Since,

[
|r|2 − |v × r|2

c2

]3/2

=
(

1
γ2

x2 + (ξ − z)2
)3/2

. (2)

Then, Ex at r(ξ, x) which is produced by the electron is:

Ex = − e

4πε0γ2

x
(

1
γ2 x2 + (ξ − z)2

)3/2
. (3)
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Figure 2:

Secondary, we assume as Figure 2 that electrons form one-dimensional pencil
beam bunch along z-axis, a bunch length is L, and charge density is uniform
longitudinally. Ex at z = ξ can be calculated by integrating Equation (3) from
tail to top of the bunch.

Here, dQ is charge in dz and total charge in the bunch is Q, then dQ = Q
L dz.

Therefer, dEx is:

dEx = − 1
4πε0γ2

· Q

L
dz · x

(
1
γ2 x2 + (ξ − z)2

)3/2
(4)

2



Then, Ex is:

Ex =
∫ L

0

dEx = − Qx

4πε0γ2L

∫ L

0

1
(

1
γ2 x2 + (ξ − z)2

)3/2
dz

=
−Q

4πε0Lx


 L − ξ√

x2

γ2 + (ξ − L)2
− −ξ√

x2

γ2 + ξ2




(5)

Ex·center at the center of the bunch can be obtained by replacing ξ with L/2
in the equation (5).

Ex·center =
−Q

4πε0x

1√
L2

4 + x2

γ2

(6)

2 Beam Envelop Equation (transverse)

As shown in the Figure 3, we can obtain a transverse beam envelop equation
by tracing the electron trajectory, which is initially located at double circle, x
apart from the bunch center.
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Figure 3:

An equation of motion of the electron is;

d (γm0v)
dt

= − e

m0
(v × B + E) (7)

From equation (7)

dv
dt

= − e

γm0

(
v × B + E − (v · E)

c2
v
)

(8)

x component of equation (8) is;

dvx

dt
= − e

γm0

(
vyBz − vzBy + Ex − vxEx + vyEy + vzEz

c2
vx

)
(9)
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We ignore vy and define vz = βc, then

dvx

dt
= − e

γm0

(
Ex − βcBy −

(vx

c

)2

Ex − βvx

c
Ez

)
(10)

Here, we discuss on effects of space charge force and acceleration by RF.
Therefore, By is split into By·charge and By·rf . We can ignore

(
vx

c

)2. Then,

dvx

dt
= − e

γm0

(
Ex·charge − βcBy·charge − βcBy·rf − βvx

c
Ez·rf

)
(11)

Using equation (6), space charge force acting on the electron is:

Ex·charge =
−Q

4πε0x

1√
L2

4 + x2

γ2

(12)

By·charge =
vzEx·charge

c2
=

β

c
Ex·charge (13)

Using dx
dt = βcdx

ds and equation (12) (13), the transverse envelop equation is
derived as follows;

d2x

ds2
=

eQ

4πε0m0c2γ3β2x

1√
L2

4 + x2

γ2

+
e

γm0βc
By·rf +

e

γm0c2
Ez·rf · dx

ds
(14)

In addition,when the bunch length L is long enough or energy γ is high
enough, we can neglect x2

γ2 since L2

4 À x2

γ2 . Then space charge term of this en-
velop equation become to coincide with those of the Lawson’s envelop equation.

3 Longitudinal Beam Equation

Longitudinal beam envelop equation is also able to be obtained using a cylin-
drical beam instead of the pencil beam shown in Figure 3.

3.1 Electromagnetic Field Produced by Cylindrical Beam

At first, we assume a circular beam illustrated in Figure 4, whose line charge
density of λ is uniform, and which moves along the z-axis with energy of γ.
Electric field at point P, produced by a small section ∆s which is a part of the
circular beam is:

∆E =
1

4πε0γ2

−λ∆sR′

[
|R′|2 − |v×R′|2

c2

]3/2
(15)

Then, Ez·ring at point P is:
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Ez·ring =
∮

s

∆Ez =
1

2ε0γ2

−λRz
(
z2 + R2

γ2

)3/2
(16)

Where R is radius of the circular beam.
Second, we replace the circular beam with a disk beam which area charge

density is σ.
We divided the disk into concentric rings with width of ∆r, radius of r, line

charge density of λ = σ∆r. Using equation (16), ∆Ez·ring at point P, produced
by one concentric ring is:

∆Ez·ring =
1

2ε0γ2

−σ∆r · rz
(
z2 + r2

γ2

)3/2
(17)

Thus, Ez·disk is:

Ez·disk =
∫ R

0

1
2ε0γ2

−σrz
(
z2 + r2

γ2

)3/2
dr =

σz

2ε0


 1√

z2 + R2

γ2

− 1√
z2


 (18)

Third, we consider a cylindrical beam instead of the disk beam illustrated in
Figure 5, with beam bunch length of L, charge volume density of ρ. we divide
the cylindrical beam into disk beams with longitudinal thickness of ∆ξ, length
between the disk and point P of ξ, charge area density of σ = ρ∆ξ. Point P
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is located at edge of the cylindrical beam, so L = 2z. ∆Ez·disk at point P,
produced by one disk is:

∆Ez·disk =
ρ

2ε0


 ξ√

ξ2 + R2

γ2

− ξ√
ξ2


∆ξ (19)

Then, Ez·column is:

Ez·column =
∫ 2z

0

ρ

2ε0


 ξ√

ξ2 + R2

γ2

− ξ√
ξ2


 δξ (20)

Using Q = 2ρπR2z

Ez·column =
Q

4πε0R2z

(√
4z2 +

R2

γ2
−

√
R2

γ2
− 2z

)
(21)

3.2 Beam Envelop Equation (longitudinal)

A longitudinal beam envelop equation is able to be derived in the same way of
transverse equation.

An electron is located initially at point P as shown in the Figure 5. An
equation of motion of the electron is;
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dv
dt

= − e

γm0

(
v × B + E − (v · E)

c2
v
)

(22)

z component of equation (22) is;

dvz

dt
= − e

γm0

(
vxBy − vyBx + Ez −

vxEx + vyEy + vzEz

c2
vz

)
(23)

We ignore vx, vy, and define vz = v then;

dv

dt
= − e

γ3m0
Ez (24)

Here, v is sum of velocity of bunch center s and relative velocity between
bunch center and the point P as shown in the Figure 5, then;

dv

dt
=

d2s

dt2
+

d2z

dt2
= c

dβ

dt
+

d2z

dt2
(25)

Now, we are deriving time evolution of relative position of point P to the
bunch. Using dz

dt = βcdz
ds and equation(21), longitudinal beam envelop equation

is;

d2z

ds2
= − e

m0c2γ3β2
Ez·charge −

e

m0c2γ3β2
Ez·rf − 1

β

dβ

ds

= − eQ

4πε0m0c2γ3β2R2z

(√
4z2 +

R2

γ2
−

√
R2

γ2
− 2z

)

− e

m0c2γ3β2
Ez·rf − 1

β

dβ

ds

(26)

4 Simultaneous Beam Envelop Equations

We are able to derive simultaneous beam envelop equations from the transverse
equation(14) and the longitudinal equation(26).

In the one-dimensional envelop equation, longitudinal beam bunch size L is
constant in the transverse equation, and radial beam size R is constant in the
longitudinal equation. Though in the simultaneous envelop equations, they are
considered as variables. We apply following variation transformations;

{
L = 2z for transverse equation.
R = x for longitudinal equation.

(27)

Then, simultaneous beam envelop equations are derived as follows;
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



d2x
ds2 = eQ

4πε0m0c2γ3β2x
1

q

z2+ x2

γ2

+ e
γm0βcBy·rf + e

γm0c2 Ez·rf · dx
ds

d2z

ds2
= − eQ

4πε0m0c2γ3β2x2z

(√
4z2 +

x2

γ2
−

√
x2

γ2
− 2z

)

− e

m0c2γ3β2
Ez·rf − 1

β

dβ

ds

(28)
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