

M. P. LEVEL on behalf of the SOLEIL team

Marie-Paule LEVEL

- Parameters of the Storage ring
- ≻Orbit correction scheme
- ≻Stability criteria
- ≻Foundations:
 - APD solution
 - Vibration measurement campaigns
 - New foundations solution
- Strategy for the SR:
 - Medium and short term stability
 - Slow feedback, fast feedback and feed-forward compensation

Energy: $2.75 \; GeV$ Circumference: 354.097m*Emittance (rms):* 3.70 nmrad Number of cells / super periods: 16/412m x 4 ; 7 m x 12 ; 3.8 m x 8 Straight sections: Betatron tunes, Q_{χ}/Q_{ν} : 18.2 / 10.3 Natural Chromat. ξ_x/ξ_v : - 2.88/-2.21 Momentum compaction: 4.49×10^{-4} 1.02 10-3 Energy dispersion

SYNCHROTRON

120 located close to the Quad. or Sext. and Straight S.

- Closed Orbit Distortion:
- 56 girders of 3 types
- Standard alignment errors \Rightarrow COD max : 15 mm (H), 7 mm (V)
- Closed Orbit Correction: 120 possible correctors in Sext.
- SVD method: 56 eigenvalues in H and V planes
- Minimal configuration: 56 correctors in H and V planes
- H plane: Max. value=500 μ m, always in the BMs (will be improved after magnetic meas.) Straight sections: r.m.s. = 25 μ m and maximum 100 μ m
- V plane: Max. value=150µm, always in the BMs Straight sections: r.m.s. =15 µm and maximum 100 µm

Marie-Paule LEVEL

taking into account BPM displacement errors of 100μm - r.m.s.
 and output accuracy of 0.2 μm - r.m.s.

	Horizontal plane	Vertical plane
Maxium rms value	0.133mrad	0.0937mrad
Maximum value	0.401mrad	0.238mrad

Remark: BPM position error will be reduced to 50 µm r.m.s. by B.B. A.
✓ It was decided to take a factor 2 margin and to design the maximum corrector deflexion at 0.8 mrad.
✓ The resolution is not completely decided between 18 and 20 bits (We must also take into account the noise induced by SVD algorithm)

Different noise sources with 3 different time scales:

- Long term stability: differential settlement and temperature variation with seasons \Rightarrow Building foundations
- Medium term stability: in general thermal drifts \Rightarrow vacuum chamber, water cooling, air conditioning etc
- •Short term stability :
 - random in-situ sources of vibrations surrounding the machine site, such as:human activities, mechanical devices, water cooling,...
 external source of vibration generating plane waves propagating in the ground.

The detrimental effect of beam position instabilities can be seen as a macroscopic increased emittance. Following the users specification we take:

 σ_{COD} < 0.1 σ_{Beam} and σ'_{COD} < 0.1 σ'_{Beam}

	σ _{cob} (μm)	σ' _{COD} (µrad)	
Horizontal	18	3	
Vertical	0.8	0.5	

In the most stringent case this correspond to $\Delta \varepsilon / \varepsilon = 1\%$

Marie-Paule LEVEL

Building foundations: Design criteria

Marie-Paule LEVEL

Building foundations: APD98 solution

Marie-Paule LEVEL

SYNCHROTRON

•Solution APD 98, reservations about:

-Elastomer supports: *behaviour with time?* No *possibility to inspect it.*

-The differential settlement between the ring tunnel and experimental hall slab: *it should be gone beyond the deformation criteria (>100 microns/year during 10 years) due to the swelling effect of silt and clay*

-The justification of the advantage of the piles with sleeving

•3 campaigns of vibrations measurements coming from the site environment showed:

- –Sinusoidal noise with in the daytime a maximum elongation peak to peak of 0.35 μ m + some accidents of 0.5 0.7 μ m (planar wave 2.5 Hz)
- -same amplitude level at the ground level and -15m deep at the Fontainebleau sands level.
- -The accidents have been identified as waves produced by some kind of public work trucks in correlation with some kind of irregularities of the two adjacent roads

Marie-Paule LEVEL

Marie-Paule LEVEL

Exemple of localization of one event of amplitude > 0.45 microns peak to peak

AVLS/VI571 Fichier TC105.tim canal vertical

We notice that the lorry produces essentially a frequency of 2.5 Hz (0.57 micron peak to peak)

The confirmation of these results have been realized by organising night traffics of 4 different types of heavy trucks on the roads lining the site:

 \Rightarrow The importance of the vibratory levels reached is not only linked to the trucks weight but essentially depends on the closeness of the two frequencies: the truck suspension resonance frequency and the typical frequency of the ground, of the order of 2.5 Hz.

 \Rightarrow Another factor plays a part: the longitudinal profile which properties favour the vibratory exitations in the particular frequency range : The average truck speed being of 60 km/h, the most unfavorable road defect is the one that generates an excitation of 2.5 Hz, which corresponds to a 3 meter long basin

Marie-Paule LEVEL

 \Rightarrow Led to plan a repairs of the roadway. The maintenance of the quality of their surface in the time will be necessary to get us rid of these vibrations.

 \Rightarrow Set again the question about the interest of the double sleeving of the piles bearing the slab of the storage ring tunnel.

Marie-Paule LEVEL

Design of beam line loading

global load: 60T on average

Marie-Paule LEVEL

 \Rightarrow Solution of APD98 cannot reach criteria on this site.

- \Rightarrow 2 families of solutions studied :
- Bored piles under the slabs of the ring tunnel and experimental hall:
 - with double sleeving
 - without sleeving
- Compacted soil (continuous slab put directly on it):
 - Substitution of a part of the silt by a sand-gravel-cement mixture (3m height)

\Rightarrow Analysis of the static behaviour:

-the intrinsic weight (slab and local storage ring tunnel, slab of the experimental hall) -the load (addition of the load due to a beam line installation)

• The two kinds of solutions enable to respect the criteria with the « noble » area (experimental slab, ring, booster and linac)

In a budget point of view the solution piles without sleeving is by far the best one :
 soil reconstructed solution : +3M€ vs the APD 98 solution

solution piles with sleeving: +4.6M€ solution piles without sleeving : +1.2M€

Chosen solution: bored piles

•Slab (0.8m thick) of the ring tunnel and experimental hall on simple bored piles (diameter 0.8 and 0.6m respectively) *with connected slab*

•No treatment of the soil

420 under the experimental hall (4*105)
128 under the ring tunnel
64 under linac and booster with a slab unconnected

No differential settlement between the ring tunnel and experimental hall.When a new beam line is installed: the criteria are respected:

	Displacement (µm)		
Location	immediately	after 6 months	total
A ring	4	8	10
A' ring	13	27	35
B beam line	15	31	40
C beam line	41	55	110
Maxi under beam line	58	120	155
B' neighbouring b.l.	19	39	50
C' neighbouring b.l			0

Marie-Paule LEVEL

⇒Dynamic studies

Software SASSI: impedance of piles (stiffness, damping)Software ANSYS: answer of a structure to a dynamic request (piles simulated by 3 springs)

•The ground shows an amplification at 2.5; 5;9 and 12 Hz

•The structure presents an amplification at 15 Hz

•The simulation of a propagating wave (same characteristics as those measured at the center of the ring) 2.5 Hz; amplitude 0.7 µm peak to peak \Rightarrow slab displacement: 0.78 µm peak to peak \Rightarrow no amplification by the slab

Marie-Paule LEVEL

Medium term stability: in general thermal drifts

- •Space of 2 mm between magnetic elements and vacuum chamber.
- •Air conditioning in the tunnel and water cooling : $T = 21^{\circ}C$ (±0.1°). Air conditioning in the experimental hall : $21^{\circ}C$ (±1°).
- •BPM rigidly fixed on the girder with Thermal screen

Design of the girder

• Static: Alignment specifications

HLS network

- \Rightarrow 3 jacks ; 4 supports all in the upper part of the girder
- Dynamic: Locking system \Rightarrow high first resonance mode (42 Hz)

 \Rightarrow No amplification of the propagating wave (0.78 µm peak to peak; 2.5 Hz) by the girder

ANSYS 6.1 NOV 20 2002 09:52:54 DISPLACEMENT STEP=1 SUB =1 FREQ=46.82 PowerGraphics EFACET=1 AVRES=Mat DMX =.020499 *DSCA=31.687 XV =-.55356 YV =-.78062 ZV =.29019 *DIST=5.409 *XF =-1.48 *YF =-3.988 *ZF =.38929 A-ZS=68.039 Z-BUFFER EDGE

ANSYS 6.1 NOV 20 2002 09:54:25 DISPLACEMENT STEP=1SUB = 2FREQ=47 PowerGraphics EFACET=1 AVRES=Mat DMX =.021108 *DSCA=30.773 XV =-.55356 YV =-.78062 ZV =.29019 *DIST=5.409 *XF =-1.48 *YF =-3.988 *ZF =.38929 A-ZS=68.039 Z-BUFFER

ANSYS 6.1 NOV 20 2002 09:55:13 DISPLACEMENT STEP=1SUB =3 FREQ=54.067 PowerGraphics EFACET=1 AVRES=Mat DMX =.01559 *DSCA=41.666 XV =-.55356 YV =-.78062 ZV =.29019 *DIST=5.409 *XF =-1.48 *YF =-3.988 *ZF =.38929 A-ZS=68.039 Z-BUFFER EDGE

 $\sigma_{COD} < 0.1 \sigma_{Beam}$ and $\sigma'_{COD} < 0.1 \sigma'_{Beam} \Rightarrow$ in the most stringent case tolerance for emittance growth: $\Delta \epsilon / \epsilon + 1\%$

For an emittance coupling of 1% :

Control ted motion : the r.m.s. values of the tolerances on the girders motion are 3.9 mm peak to peak and 1mm peak to peak respectively in the horizontal and the vertical plane.

Correlated motion : The tolerated vertical amplitude corresponding to 2.5Hz (*vibration measurements performed on the SOLEIL site*) is of 1.25 μ m peak-to-peak which is above the amplitude of the cultural noise measured on the site (0.35 μ m peak-to-peak, with some accidents at 0.7 μ m peak-to-peak).

Remark: for a coupling of 0.1% the tolerated vertical amplitude is 0.4 μ m peak-to-peak, so it is necessary to suppress the accidents of higher amplitude

Vertical peak wave amplitude tolerated

Marie-Paule LEVEL

Feedbacks

➢ Global slow feedback using 120 BPMs and 56 correctors in each planes H and V:

•resolution 0.2 μ m, correction every second (cf. J.C. Denard)

• bandwidth 0 to 0.1 Hz

> Global fast feedback \Rightarrow to stabilize all ID's experiments : 48 BPm's(among the 120 ones) and 48 correctors positionned on the bellows:

- resolution 0.2 μm
- Bandwidth 0.1 to 100 Hz

Feed-forward compensation: Tables from magnetic measurements and experiments with beam applied on undulators correctors and possibly fast feedback correctors