Exploiting Digital BPMs at ELETTRA

IWBS02 Spring-8, Japan December 4 - 6, 2002

A fast local orbit feedback and the feedforward system for the compensation of an Electromagnetic Elliptical Wiggler (EEW) dynamic orbit distortions

D. Bulfone

- Low-Gap BPMs with Digital Detector
- Local Orbit Feedback Test
- Feedforward Correction System for the compensation of the EEW dynamic orbit distortions

Low-Gap BPMs with Digital Detector

IWBS02 Spring-8, Japan December 4 - 6, 2002

• Two new-type BPMs located either side of an Insertion Device:

> New mechanical design of the sensor (14 mm gap)
> Residual mechanical drifts monitored by contact-free capacitive sensors with respect to a Carbon fibre reference column

• RF Front-end and digital detector electronics (collaboration with SLS and Instrumentation Technologies)

Local Orbit Feedback Test

IWBS02 Spring-8, Japan December 4 - 6, 2002

• Four corrector magnets local bump that corrects the electron beam position and angle at the ID centre

- Closed loop in both horizontal and vertical planes
- Beam position sampling rate = 8kHz

Local Orbit Feedback Test

• PID (Proportional Integral Derivative) controller adopted to reduce low frequency components of the beam noise spectra

D. Bulfone

Local Orbit Feedback Test

- Beam position spectra at lowgap BPM #1 with local feedback off/on. The rms of the position signal in the 0-80 Hz range is reduced from 1.24 μ m to 0.2 μ m. • PID regulator plus narrow-band harmonic suppressor at 50 Hz (and harmonics).

Hz

- Beam position spectra at photon-BPM along the corresponding beam-line

tal BPMs at ELETTRA

IWBS02 Spring-8, Japan December 4 - 6, 2002

Local Orbit Feedback Test

- Comments & Plans

• Low-gap BPMs with digital electronics are suitable for fast orbit feedbacks.

-> Optimize Digital Down Converter (DDC)latency time vs. internal filters configuration (from 350 to 200 µs, 8kHz output rate)

• Feedback digital processing executed by "standard" control system G4 PowerPC/Altivec based board with real-time Linux operating system (RTAI)

-> no dedicated DSPs

• Guidelines:

> continue installation of low-gap BPMs with digital detector electronics on other ID straights for local orbit feedbacks

- > develop global orbit feedback based on:
- low-gap BPMs plus a subset of existing rhomboidal ('old-type') BPMs
- both equipped with the new digital detector and RF front-end electronics
- Smooth installation, keeping existing BPM 'strategic' functionalities (position interlock at IDs)

• Scalable system architecture, allowing for integration of additional BPMs/correctors as long as they become available.

D. Bulfone

Feedforward Correction System for the compensation of the EEW dynamic orbit distortions

IWBS02 Spring-8, Japan December 4 - 6, 2002

- Preamble

- Electromagnetic Elliptical Wiggler (EEW) in operation since 1997
- Helicity varied by changing horizontal magnetic field:
 - > DC mode: slow ramps
 - > AC mode (trapezoidal/sinusoidal), frequencies up to 100Hz (sinusoidal)
- Residual closed orbit distortion compensated by feedforward system based on two pairs of horizontal/vertical coils installed at each wiggler end
- DC mode: correction coils lookup table values obtained by off-line calibration based on minimization of closed-orbit distortion

- **Objective**: Determine the lookup table values when the EEW is operated in AC mode, taking into account dynamic effects and nonlinearities (increasing with operating frequency).

Feedforward Correction System for the compensation of the EEW dynamic orbit distortions

- Procedure

1. Measure response matrix Rm between correction coils and low-gap BPMs

2. Synchronously measure periodic orbit distortion using the low-gap BPMs <u>while running</u> <u>EEW with the desired periodic waveform</u>

3. Filter out beam noise that is not generated by the EEW:

- average many periods

- low-pass, notch filters at 50Hz

4. Interpolate to obtain four arrays of fixed length and subtract DC

5. Calculate correction coils lookup tables by multiplying -Rm⁻¹ by the "cleaned" orbit distortion vectors.

6. Iterate from 2.

IWBS02 Spring-8, Japan December 4 - 6, 2002

Feedforward Correction System for the compensation of the EEW dynamic orbit distortions

IWBS02 Spring-8, Japan December 4 - 6, 2002

• Iterative converging process

• Example: Sine wave at 11Hz $I_h = \pm 260$ A

- RMS of the residual orbit distortion at the low-gap BPMs during the optimization iterations

D. Bulfone

Exploiting Digital BPMs at ELETTRA

Feedforward Correction System for the compensation of the EEW dynamic orbit distortions

IWBS02 Spring-8, Japan December 4 - 6, 2002

• Sine wave at 1Hz

- Orbit distortion at low-gap BPMs: blue without feedforward, red with feedforward correction

- Photon BPM readings with feedforward correction inactive, active and EEW stopped

Feedforward Correction System for the compensation of the EEW dynamic orbit distortions

IWBS02 Spring-8, Japan December 4 - 6, 2002

• Sine wave at 90 Hz

- Vertical position spectra from low-gap BPM#1, showing that the harmonics of the EEW switching frequency are eliminated by the feedforward correction system

- Status:

• "AC mode" lookup tables routinely used during Users shifts (one set of tables per modulation waveform)

Thanks to: R. De Monte, M. Ferianis, V. Forchi', G. Gaio, M. Lonza, G. Mian, L. Pivetta, L. Zambon.

D. Bulfone

Exploiting Digital BPMs at ELETTRA