

High Resolution and Stability Beam Position Measurements

Jean-Claude Denard

International Workshop on Beam Stability Spring 8, Japan; 3-6 December 2002

Outline

- Why stable BPMs ?
- BPM requirements
- Multiplexed electrodes BPM system
- New Digital BPM system
- Mechanical issues
- Girder design issues for submicron beam stability
- Conclusion

IWBS, Japan, 4-6 Dec. 02

Artist's view of SOLEIL in 2006

IWBS, Japan, 4-6 Dec. 02

As it is today

IWBS, Japan, 4-6 Dec. 02

Why Stable BPMs ? Beam Stability Strategy for S¢leil

- Reduce drifts and vibrations as much as possible (air & water temperature regulation, feedforward reduces ID effect to few μm)
- The two closed orbit feedback systems are based on machine BPMs
 - > Slow closed orbit feedback (0 to ~ 0.1 Hz)
 - ≻ Fast orbit feedback (0.1 to 100 Hz)
- Beam is locked to the BPM centers by correction algorithms
- With good feedback systems:

Beam stability (0 to 100 Hz) \approx BPM stability

• Check beam stability with Photon BPMs (no feedback on them)

IWBS, Japan, 4-6 Dec. 02

What Needs to be Stable?

Soleil type of strategy requires:

- Stable ground (see building foundation, part of M.-P. Level talk)
- Stable BPM mechanical center with respect to ground
 - ➢ BPM attached to girder
 - Need stable girder (M.-P. Level talk)
 - Need stable BPM support on girder
- Stable BPM and vacuum chamber design
- Feedback accuracy to lock beam on BPM centers (IDs between 2 BPMs)
 - Quadrupole movements should not cause any beam movement if the orbit correction is perfectly done to the BPM centers
- Possible beam spectrum components at 100 and 150 Hz can be suppressed with specific harmonic locks on these frequencies

IWBS, Japan, 4-6 Dec. 02

Additional BPM functions

Required

- First turns
- Turn-by-turn for machine studies

Useful (not absolutely required)

- Post-mortem position data buffer
- Analog output signal for beam position interlock

IWBS, Japan, 4-6 Dec. 02

BPM Mechanical Design

BPM side cross section

- BPM is the only fixed point of its vacuum chamber section
- Bellow relieves stress on BPM
- Water cooling channels keep BPM temperature constant

IWBS, Japan, 4-6 Dec. 02

BPM Requirements for SOLEIL

	Closed orbit correction	Global Feedback	First turns	Turn-by-turn for machine studies
Number of BPMs	120	48	120	120
measurement resolution (rms)	< 0.2 μm in 1 second	<pre>< 0.2 µm (residual on beam with 100 Hz feedback BW)</pre>	< 500 µm in a single measurement	< 1 µm in 60 seconds
Absolute accuracy with respect to quad	< 200 μm	×	< 500 μm	< 200 μm
Absolute accuracy after beam based alignment	< 50 μm	×	×	×
Measurement rate	> 1 per second	~ 1 KHz for 100 Hz feedback BW	1 per second	every 60s
Dynamic range	M: 200 - 600 mA T: 20 - 120 mA	M: 200 - 600 mA T: 20 - 120 mA	0.4 - 4 mA	4 - 100 mA
Current dependence within a 10 dB range	< 5 µm < 1µm after calibration)	< 5 µm (< 1µm after calibration)	< 500 μm	×
8-h and 1-month drift (at constant current	< 1 μm in 8 h < 3 μm in 1 month	< 1 µm in 8 h < 3 µm in 1 month	< 500 µm	×
Reproducibility versus bunch pattern	< 10 µm (< 1µm after calibration)	< 10 µm (< 1µm after calibration)	< 500 µm	< 500 μm

IWBS, Japan, 4-6 Dec. 02

High Accuracy BPM Electronics

At this time, only two concepts have proved to function at the micron level and are improving at the submicron level

- Multiplexed electrodes system
- Digital BPM system

Good tutorial on BPM systems by G. Vismara in AIP conference proceedings #546 (9th Beam Instrumentation Workshop)

IWBS, Japan, 4-6 Dec. 02

Multiplexed Electrodes BPM system

Simplified Block Diagram

IWBS, Japan, 4-6 Dec. 02

Multiplexed Electrodes BPM system: pros and cons

Pros

- Single electronics → single gain & offset for the 4 electrodes
- Excellent position stability
- Excellent current dependence
- Commercially available from Bergoz company

Cons

- Resolution issues
 - ➤ Synchrotron oscillations → noise increase due to aliasing
 - Difficulty to get low noise
 - ◆ Signal available ¼ of the time
 - Front end matching for low current dependence
 - Preamplifier with AGC capability
 - No turn-by-turn acquisition

IWBS, Japan, 4-6 Dec. 02

Digital BPM system

IWBS, Japan, 4-6 Dec. 02

Digital BPM system: Pros and Cons

Pros

- Programmable → turn-by-turn as well as stored beam
- Excellent resolution
 better resolution = lower beam
 noise OR wider bandwidth with
 fast feedback
- Large dynamic range (AGC)
- Digital Down Conversion has no offset
- Commercially available from i-tech (see i-tech talk at this workshop).

Cons

- Need elaborate calibration scheme (gain ratios vary with AGC voltage)
- Current dependence and stability rely on excellent calibration performance for beam stabilization at the submicron level

IWBS, Japan, 4-6 Dec. 02

Girder Stability for BPMs

Courtesy of M. Bögel

IWBS, Japan, 4-6 Dec. 02

Looking for Solution for Future Machines

- Standard steel girders have
 ≈ 1 hour thermal inertia
 and follow tunnel
 temperature changes
- Concrete girders (like at ELETTRA) have a large thermal inertia
- Simulation on figure → steady state of 1 °C air temperature step

IWBS, Japan, 4-6 Dec. 02

Expected Damping of Air Temperature Drifts with Concrete Girders

IWBS, Japan, 4-6 Dec. 02

Conclusions

- BPM electronic is improving to the submicron level
- Mechanical interface with vacuum chamber should be OK at the submicron level
- Temperature related issues with the girders are likely to be a problem at the submicron level

