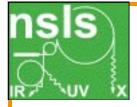
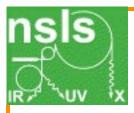


2nd Workshop on Beam Orbit Stabilization, SPRING-8, Japan

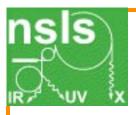
Operations with Fast Digital Orbit Feedback Systems at NSLS


Boris Podobedov

BNL - NSLS


Acknowledgements

- People working on the project
 Brian Kushner, Susila Ramamoorthy, Yong Tang, Emil Zitvogel
- Thanks are due to
 Rich Biscardi, Steve Kramer, Sam Krinsky, Rich Michta,
 John Smith (all from NSLS), Om Singh (ANL), Dmitry
 Teytelman (SLAC)


Outline

- Introduction
- NSLS System Design
- NSLS System Performance
- Challenges and Future Work
- Conclusion

Relevant NSLS Ring Parameters

Parameter	UV	X-ray
Energy	800 MeV	2.8 GeV
Orbit Circumference	51 m	170 m
Horizontal/Vertical Tunes	3.1 / 1.3	9.8 / 5.7
Typical beam size, H/V	500 / 200 μm	200 / 50 μm
Lifetime	5 hrs	13-25 hrs
Nominal duration of a fill	5 hrs	12 hrs
Number of correctors H/V	16 / 16	56 / 40
Number of BPMs H/V	24 / 24	48 / 48
Typical corrector BW H/V	60/30 Hz	60 /30 Hz

Motivation and History

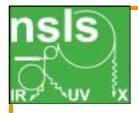
- Environmental noise on the beam (Booster, Floor Vibrations, 60 Hz Harmonics, etc.)
- Eliminate or Build a Feedback System
- NSLS efforts

Late 80s: Analog local feedbacks in some of X-ray beamlines

Late 80s: Analog global feedback system in UV and X-ray rings

Mid-90s: Digital feedback test system development in X-ray ring

"Old Digital Feedback System" at NSLS


550 Hz sampling rate

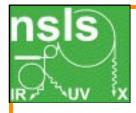
High gain but only ~15 Hz correction bandwidth

Significant reduction in slow drift and 1.2 Hz booster noise

Studies only; never put into operations

Clear advantage of going digital

Calculating Correction Values


Singular Value Decomposition of the Response Matrix

- Max # of Eigenvectors = Min(# of BPMs, # of trims)
- More Eigenvectors = Better Correction
- But as the # of Eigenvectors Increases

Computation time increases

More sensitive to errors at isolated BPMs

May run into stability problems

New System: Design Trade-Offs

Sampling Rate = 5 KHz

Match the analog system BW

No anti-aliasing filters

Independent system vs. existing micros

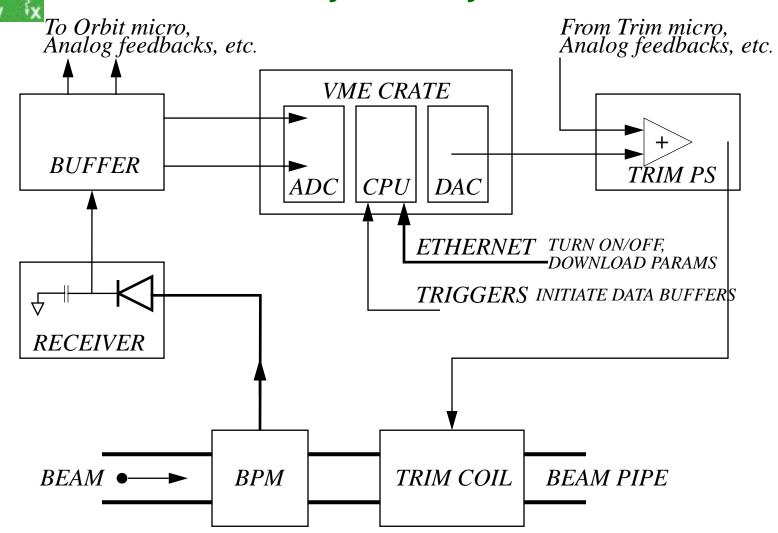
Could not get 5 kHz

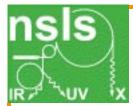
Development without interfering with operations

• Where and how to digitize:

at BPM receivers vs. off-the-shelf ADCs in a VME crate)

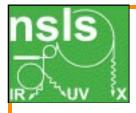
Noise


Reliability in X-ray tunnel


Proprietary design and development time

• Single board VME CPU vs. DSPs

Mainframe expertise at NSLS

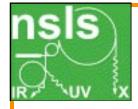

New System Layout

NSLS VUV Ring Digital Orbit Feedback System

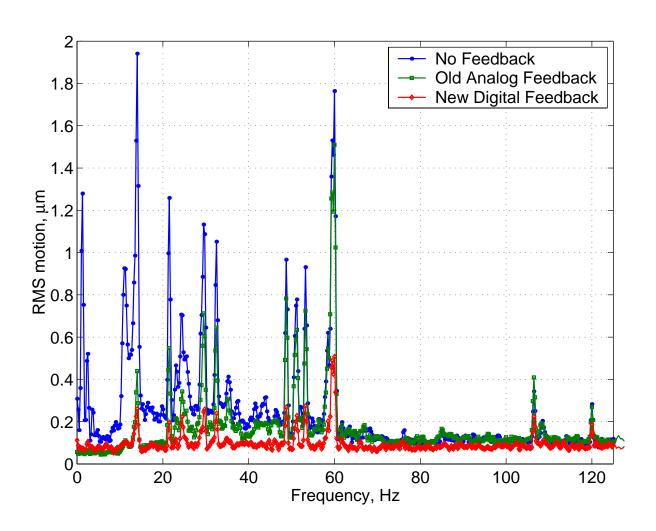
Configuration

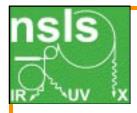
VUV Ring (In Operations since Aug. 2000)

Both planes in one system 24 BPMs, 8 trims, 8 eigenvectors each plane

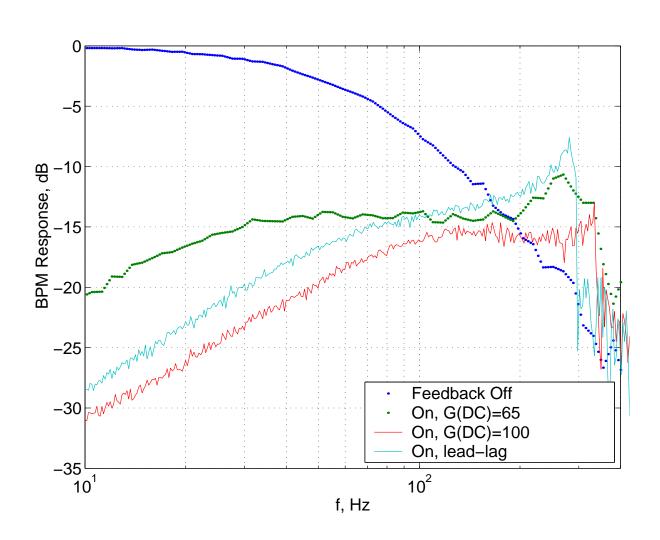

• X-ray ring (Vertical in Operations since Sept. 2002) One system per plane

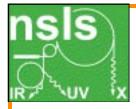
Vertical:


48 BPMs + 1 Photon Blade, 39 trims, 8 eigenvectors

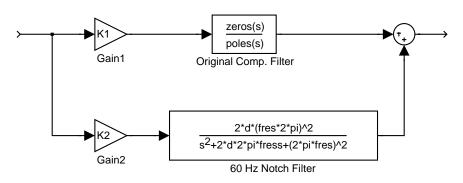

Horizontal (studies configs):

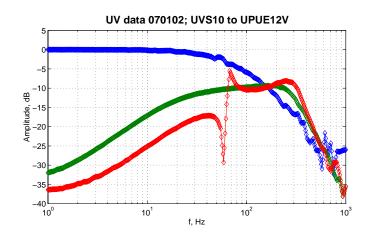
48 BPMs + 1 Photon Blade, 39-55 trims, up to 16 eigenvectors

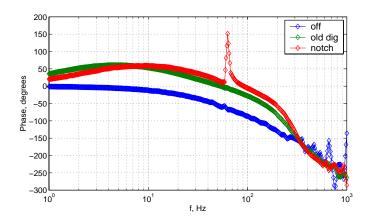

Orbit Noise Reduction

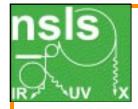


Frequency Response

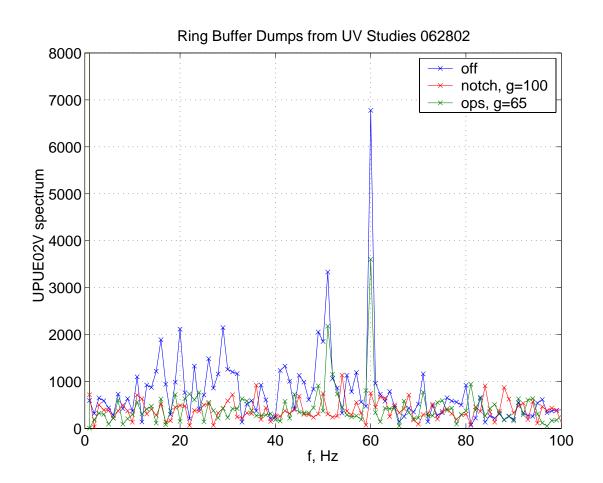

<u>Setup</u>: Use a network analyzer; excite a vertical trim not used in the feedback; measure the response at a vertical BPM

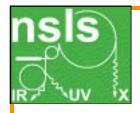

60 Hz Notch Filter I


Basic Idea

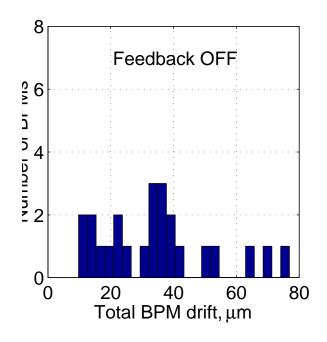


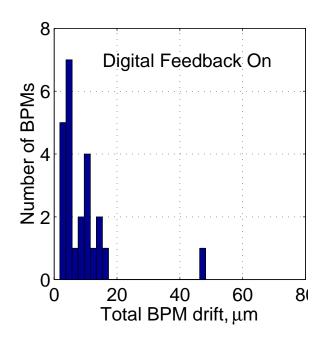
Implementation

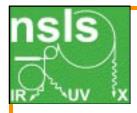

- 60 Hz is damped>25 dB
- Regular Ops in VUV ring since July, 2002
- Works in the X-ray as well



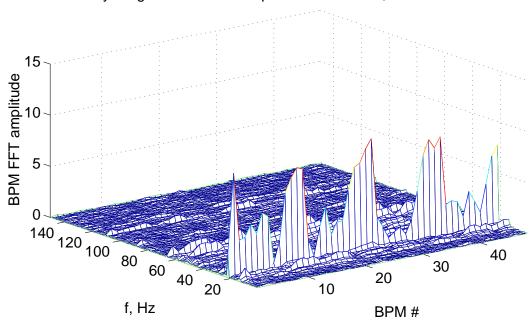
60 Hz Notch Filter II



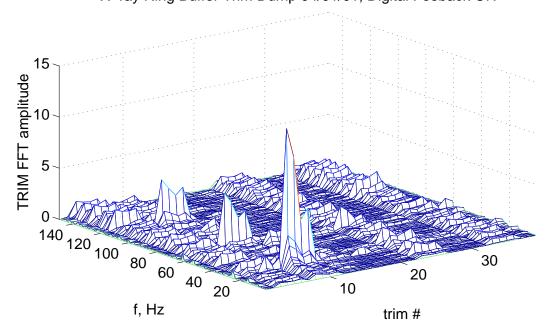

- Similar low frequency behavior but
- 60 Hz power-line noise is virtually eliminated

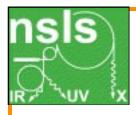

Long Term Orbit Drift

Conditions: Standard VUV Ops, 5 hour fill, 830 mA>I>350 mA



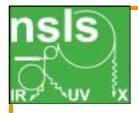
- Average drift reduced from 35 μm to 6 μm (<3% FWHM vertical size)
- Same in horizontal
- X-ray ring: vertical O.K. (<10% of beam size) horizontal - <u>looks</u> O.K. but systematic BPM errors...




Machine Diagnostics

X-ray Ring Buffer Orbit Dump 04/01/01 ~19:15; All Feedbacks Off

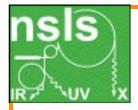
X-ray Ring Buffer Trim Dump 04/01/01; Digital Feeback ON



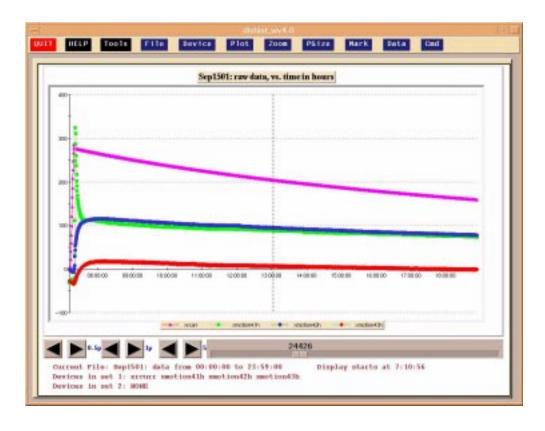
Challenges and Future Work

- How to implement global and local correction together?
 SVD + BPM weights
- How to add photon blade monitors to the system?
 trivial except RM with IDs closed
- Which trims & BPMs to use? Optimal algorithm?
 experience + simulations
- How to account for BPM errors due to mechanical motion?

"monitor the monitors"

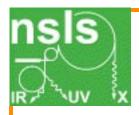

How to handle PS saturation?
 brute force + simulations

BPM Errors due to Beam Pipe Motion I


- "Old digital system" used to give smaller horizontal orbit drift with increased # of eigenvectors
- Users observed the opposite...
- This was traced to the beam pipe motion
- · Ceramic stands to measure this motion were built

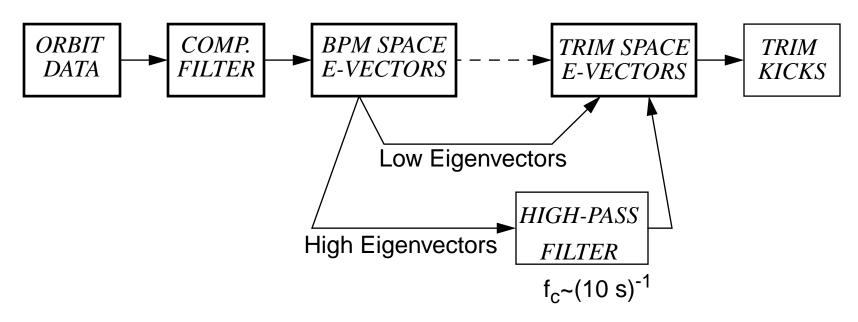
BPM Errors due to Beam Pipe Motion II

Observations


Ultimate Fix

Real time measurement of BPM motion

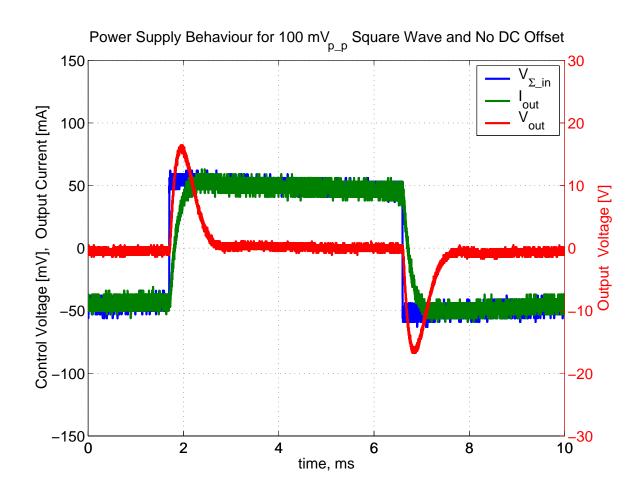
Account for the error before feedback correction


Simpler solution

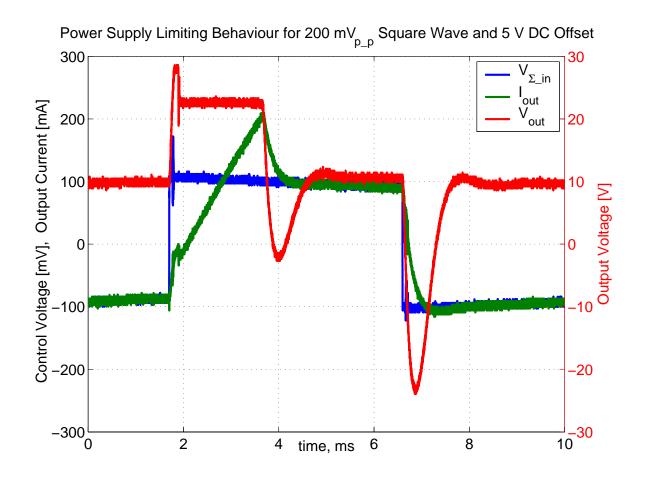
Use a look-up table based on beam current, beam pipe temperature etc.

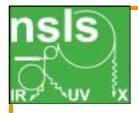
BPM Errors due to Beam Pipe Motion III

Short Term Fix Based on Timescale Separation


Slow drift -> fewer eigenvectors

High frequency noise -> more eigenvectors


Trim Power Supply Saturation I


- Trims are inductive for fast feedback (L=20-40 mH, R~1 Ω)
- We use KEPCO BOP-20-10 power supplies
- They are not optimized for inductive loads (voltage limit)
- Spiky output when slew rate or voltage limits reached
- Have to be smart to handle saturation properly
- Problem is for X-ring only (many saturated trims)

Trim Power Supply Saturation II

Summary and Outlook

- We have built a 5 kHz digital orbit feedback system
- Significant improvement over the existing analog system
 Orbit Noise Correction

Slow Drift Reduction

Use for Machine Diagnostics

Flexibility, Ease of Maintenance, Reliability etc.

• VUV ring status:

The system is used in regular operations

X-ray ring status:

Vertical system is used in regular operations

Horizontal: issues with corrector saturation and BPM Stability

Will be in Operations Soon

• Further development (algorithms, modelling, etc.)