

APS Orbit Correction Hardware

1. Beam Position Monitors

- Broadband BPMs (MpBpms)
- Narrowband BPMs (NbBpms)
- X-ray BPMs

2. Corrector Systems

- "Fast" corrector system
- "Slow" corrector system

3. Orbit Feedback systems

- "AC" (RTFB) orbit feedback system
- "DC" orbit feedback system

Argonne National Laboratory Advanced Photon Source AOD Diagnostics

IWBS 2002, SPring-8 Om Singh December 4-6, 2002

BEAM POSITION MONITORS

- 1. 360 Channels of Broadband (10 MHz) rf BPMs
 - Recent upgrades (matching networks and timing systems) has improved performance - completed in 2001.
 - Provide turn-by-turn position data. 8000 samples (16000 turns) kept in circular memory buffer (beam history modules) - used primarily for post-mortem analysis.
 - Hardware boxcar averager (32 samples) provides 4KHz BW for AC feedback.
 - Hardware boxcar averager (2048 samples) provides 30 Hz BW for DC feedback
 - Vertical BPM Data is severly affected due to rogue microwave mode

 worse during top-up operation.
 - "Cogging" mode study in progress to reduce above effects

BEAM POSITION MONITORS (continued)

- 2. 56 Channels of Narrowband (300 KHz) rf BPMs
 - Installed on ID vacuum chambers mounted rf BPMs
 - Commercial electronics; integrated with in-house data acquisition system - completed in 2000.
 - Presently used in DC orbit correction system software upgrade in process to be used in AC (RTFB) orbit correction system.
 - Excellent performance small dependence on bunch pattern and intensity variation; high reliability and easy maintainability.
 - Workhorse for insertion device user's beam stability and reproducibility

BEAM POSITION MONITORS (continued)

- *3. 54 channels of insertion device x-ray BPMs*
 - Integrated a DSP based x-ray BPM data acquisition system with broadband/ narrowband data acquisition systems - completed 2001
 - Each x-ray beamline front end has two units installed
 - Each unit has 4 metallized CVD Diamond blades placed edge-on to the x-ray beam
 - Each unit mounted on x-y translation stage. Three portable translation stage motor controllers used for calibration and centering.
 - Comprehensive understanding of systematic effects due to gap changes are in progress.
 - X-bpms have been used in orbit feedback at a fixed gap with excellent results.

APS ID X-ray BPM Photoemission Blade Sensor Geometry

X-bpm housing

X-Y Translation Stage

BEAM POSITION MONITORS (continued)

4. 36 channels of bending magnet x-ray BPMs

- Vertical only 1 blade above and 1 below;
- Very simple; our most believable diagnostic
- All BM x-bpms in orbit feedback
- Workhorse for bending magnet user's orbit stability and reproducibility
- Translation stages only in the vertical plane.
- Data acquisition, filtering same as ID x-bpms

CORRECTION MAGNETS and POWER SUPPLIES

- 1. 317 combined-function horizontal/ vertical corrector magnets and power supplies available for orbit correction
 - 38 correction magnets are mounted at spool pieces location

 faster response time (few hundreds of Hz). All correctors
 are used in "AC" feedback system.
 - 279 remaining correction magnets are mounted at location with thick aluminum vacuum chamber wall - subject to large eddy current effects resulting in lower frequency response (few Hz); and are available for "DC" feedback system

Corrector Error Power Spectrum - Roadmap of Horizontal Sources

"DC" ORBIT FEEDBACK SYSTEM

1. Workstation based System

- Sampling frequency has recently been increased from ~ 0.5 Hz to ~ 2 Hz.
- Correction BW, now, is dc to ~ 0.2 Hz.
- Employs SVD algorithm
- Horizontal orbit configuration shown includes all available Bpms and 2 Corr.
- Employs "despiking" for bad Bpms
- Employs intensity dependence offsets
- Employs compensation to cancel overlap with AC feedback system

Hor BPMs (10 sectors)												
		1	2	3	_4	_5	6	_7	8	9	Ō	
	AU 🛛 A1				2		F.					
	A2				Ξ.				5	2	Ξ.	
ms	AS A4						F.	F.				
Bp	B5			۳.	۳.	5		5	5	۳.	Ξ.	
R	B3						Ξ.	Ξ.	2			
	B2				2		2	5	2	2		
V	BO			Ξ.	Ξ.		Ξ.	Ξ.	Ξ.	Ξ.	Ξ.	
B B B	D1 D2											
<u>a</u>	I1											
×	12_											
	Correctors											
	2.4	1	2	3	4	5	6	7	8	9	Ô	
р	AI A2				Ë.	Ë.		É.			Ë.	
	АЗ 24											
	B4 _											
	B3 _											
	B1											
1	IWBS 2002, SPring-8											
	Om Singh December 4-6. 2002											

Argonne National Laboratory Advanced Photon Source AOD Diagnostics

- Vertical orbit configuration shown includes only narrowband and X-ray Bpms /2 corr.
- Broadband Bpms exhibit large vertical motion due to rogue microwave effects
- Study in progress to address this
- Plan to add 2 more narrowband Bpms
- 2. IOC based (Datapool) System
 - In progress
 - Sampling frequency upto 50 Hz
 - Expected correction BW upto 10 Hz
 - Utilizes 22nd VME feedback crate making use of reflective memory

Om Singh December 4-6, 2002

X-Bpms and NbBpms Data Acquisition - Two Sectors

SUMMARY

- "Cogging" implementation in MpBpms is in progress
- Additional 2 NbBpms per sector are planned to be added to improve orbit stability
- BM X-bpms are routinely used in orbit configuration
- ID X-bpms are routinely used for user's orbit reference
- ID X-bpms study in progress for orbit control configuration with varying ID gap.
- DC orbit correction with 10 Hz update rate is under test and planned to be in operation by January, 2003. Update rate upto 50 Hz is feasible.
- Reduction in ID steering transient effects has been observed with the increase in DC orbit correction rate

•

Argonne National Laboratory Advanced Photon Source AOD Diagnostics

