Slow Orbit Correction in the SPring-8 Storage Ring

K.Soutome

on behalf of

"Beam Orbit Stabilization Project Team"

SPring-8

1) Brief History

2) Beam Position Monitors (BPMs)

3) Steering Magnets (STs)

4) Current Status

5) Summary

Brief History

Beam Commissioning Started in March, 1997.

Suppression of Main Harmonics of COD around Tune

Calibration of BPMs with Beam:

Imbalance of Voltage from Four Button-Pickups M.Masaki, et.al. Proc.11th Symp. on Acc. Sci. and Tech. 1997, p.83

Offset by Using High-Harmonic Components K.Soutome, et.al. NIM A459 (2001) 66

Direct COD Correction w/o Main Harmonics

Minimum Distortion of Dispersion Function

Compensation of Energy Drift (Tidal Effect)

Averaging of BPM Data on VME

"High-Precision" STs (first installed in January, 2001 and added in August, 2002)

Number and Position of BPMs and STs

BPM

Total Number: 280

6 BPMs / Cell

ST ("Normal" Type)

Total Number: 282(H) ; 268(V)

6 STHs & 6 STVs / Cell

ST ("High-Precision" Type)

Total Number: 24(H) ; 24(V)

1 STH & 1 STV / 2 Cells

BPMs for COD Measurements (cont.)

28sec for a Sequence of COD Measurement (Avg. 25)

Reproducibility of BPMs

Measure COD repeatedly about 100 times.

- → RMS difference of nearest two CODs
- → **Reproducibility:** $[COD(t+\Delta t) COD(t)]_{RMS} / \sqrt{2}$

Reproducibility of BPMs (cont.)

Resolution of BPMs

Resolution Estimated from Reproducibility: better than 0.6μm(H); 0.5μm(V) for N = 25

Note: The effect of real orbit drift within Δt is included.

Two Kinds of Steering Magnets

"Normal" Type with Iron-Yoke

Total Number:282(H); 268(V)Max. Kick Angle: $\pm 1mrad (H)$; $\pm 0.5mrad (V)$ Power Supply: $\pm 5A$, 16bitMin. Step: $0.03\mu rad (H)$; $0.015\mu rad (V)$

... used in manual correction for e.g. beam tuning

<u>"High-Precision" Type with Air-Core</u>

Total Number:24 (H); 24(V)Max. Kick Angle:±13μradPower Supply:±5A, 16bitMin. Step:0.0004μrad... used in auto-correction for user timeHysteresis-Free

Why "High-Precision" STs in User Time?

COD Correction with "Normal" ST

- "Best-Corrector" Method 12 STs Used Interval: 40s 50 Corrections
- Jump of a few μm order was observed at each correction!

Betatron Phase at High-Precision STs

Compensation of Energy Drift

Summary

BPMs

Averaging on VME: 25 times Resolution: better than 0.6µm(H); 0.5µm(V)

Steering Magnets

Two Types of Steering Magnets "High-Precision" Type for Smooth Correction in User Operation

COD Correction

Direct Correction w/o Main Harmonics (Drift < 5 - 6 μ m/day) Compensation of Energy Drift by RF Frequency ($\Delta p/p \approx 10^{-5}$)