Activities on Beam Orbit Stabilization at BESSY II

J. Feikes, K. Holldack, P. Kuske, R. Müller

BESSY – Berlin, Germany

IWBS`02 – December 2002 – Spring 8

Roland Müller BESSY

Beam Orbit Stabilization at BESSY II - IWBS '02 – Spring8

Roland Müller BESSY

Beam Orbit Stabilization at BESSY II - IWBS '02 - Spring8

Outline: Status

Components Diagnostics, Correctors, Set-Up Performance Per fill, day, week, months Problem Areas Residuals, transients Conclusions

Orbit Control @ BESSY

- Basic System Parameters:
 - 112 RF BPMs, 16 bit, 1μm res. (0.1s avg.)
 - 16 XBPMs, 25 SPMs, 1 TPM, 2 Pinholes
 - 64 vertical, 80+1 horizontal, 3mrad
 Correctors + 1Hz precision RF
 - 2 sec/orbit, 6 sec/correction cycle
 - model based response matrix
 - weighing factors 1 for RF BPM, 0 for XBPM
 - 50% significant SVD eigenvectors

The BPM Systems

- 1. Storage Ring Closed Orbit
 - Accurate (1 µm)
 - Reliable
 - 1 Hz Application Update Rate
- 2. Storage Ring Single Turn - Fast (800 ns / turn)
- 3. Injection system
 - Fast (5 kHz sample rate)
 - Flexible

Specialized Modes for Booster, Transfer line and Storage ring

Data collection via network handshake

BPMs Storage Ring: Closed Orbit

Precise Photon BPM Systems

Ver.: Staggered Pair Monitors SPM

Hor.: Transversal Position Monitors TPM Undulator/WLS XBPM

4-Blade Spectrometer XBPM

Roland Müller BESSY

Beam Orbit Stabilization at BESSY II - IWBS '02 – Spring8

Tune/β-Beat Compensation: Storage Ring Quad Offset Terms

Orbit Correction Software:

Versatile, Accurate, All-In-One Working Horse

'Continous Mode':

1 Orbit / 2 sec

Read Orbit Calculate/Set Settle/Discard Read Orbit

1 Corr. / 6 sec

. . .

Quit Sto	orage Ri	ng (Drbit	Help							
Data Statistics											
Vertical Horizontal											
Mean: –(0.00257		-0.00009								
RMS: 0	.10711		0.09420								
Average #:	ľ1.0 Υ−	/-Clip: 0.4į̇́000									
Display Diagram Orbit Control											
											S-Matrix
Cut Off Ampl. [mm] Angle [mrad]											
1.0 0.20 0.05											
Correct	Correct Bump										
Tune Hor (17.83398 Ver (16.69629											
Exp.S-M. H	or	V	er								
Measurement Modes											
Trajectory 🗆 Contin. Meas. 🗆											
Displacen	n. 🗆	Clos	ed Orbit								
	Data Ha	ndling									
Logging	OFF 🗆	LogF.									
Show	/Log	CorrF.									
	Operation	Setu	3								
BPMZ1	BPMZ1 - D1R - 10 [s] -										
Turn #	Windo	w	Sampli	ng							
0	100		1								
DDMSuptor			DEQTA	DT							
BEMBYSTERI											
Linkson Dr. 11	Instory head HW: New Model based Hor./Ver.S-Matrix										

Malory:

System Performance: Metrics

Stability: per fill, weeks/months orbit typically stabilized at 106/112 BPMs to better than 10µm/fill, 2µm fill to fill Reproducibility: spanning different user beam time slots: beam based calibration Reliability: MTBF, hardware faults, DAQ problems, controls failures: <0.5/month Human Factor: protection against faulty operation, ease of use + understanding Key to problem tracking: action, data logging

hour example: RMS Stability

24 hours example: Avg./RMS

Stability during Start-Up Week

Roland Müller BESSY

Beam Orbit Stabilization at BESSY II - IWBS '02 - Spring8

Stability 2002: 6 month raw data

Transient Perturbations

MDIZ3T5G:It50 Orbit (3, 12) **UE56** brakes: Adjacent Hor. Correctors RMC01V (0. 0.01) RMC03V Magnetic (0. 0.01 RMC02V (0, 0.01)drives. RMC04V (0. 0.01) 0.008 HS4P1D3R:set Horizontal (-0.17, -0.163) MCLKHX251C:freq (499644, 499644) `spikes' of 1-3 UE56ID3R:SBasePmGap.B (-10, 10)UE56ID3R:BaseParGapsel.B μm RMS. 0.008 (25, 27) HS4P2D3R:set A (0.133. 0.138) Complete and business compensation.... difficult. **Discontinous** ID-feed-0.002 forward tables Shift Gap similar. -60 -40 -20 20:59:25 Nov 25, 02 (20:21:32, 0.00659128) (Minutes)

Beam Orbit Stabilization at BESSY II - IWBS '02 - Spring8

Step Function Changes

- Hardware repairs, modifications.
- Hysteresis
 Field Cycle of λshifter: strong dipole kick compensators.
 - Minor adjustments of optics: ID feed-forward, tune/
 chromaticity adjustment.

Other Uncorrected Residuals

- LHe refill of superconducting λ -shifter modifies field.
- Decay of SC eddy currents (~1h).
- Uncalibrated path length correction of λshifter cycles: slight beam energy changes.

Beam Orbit Stabilization at BESSY II - IWBS '02 – Spring8

BPM Failure Detection/Repair

osV (mm)

- MTBF: ~2 month
 Remaining malfunction hard to detect
 - E.g. exotic oscillator output level causes erroneous readings
- Beam-Based auto-calibration not yet implemented

Beam Orbit Stabilization at BESSY II - IWBS '02 – Spring8

Roland Müller BESSY

Problem Tracking Facilities

Comprehensive signal archive (~8000 channels): time, source-effect correlations

Operator/Program action logging: irregularities, misunderstandings, malfunctions

File Options Preferences

Facility	Device	Host	Process	PID	User	Time	Status	Severity	Verbosit	Vata Erro	n Text	Messa
Urbit	орісас:0.0	орісэс	IWA	2015	орі	1000 1000 25 11:46:37 200	CORK	Into	INOTE	IWALU	# 858 (100) 48.167575 mA -0.033841 h: H# 48/-48 O 0.006999/-854382451 P 0.0067	PROGRAM RESULT, CALC
Orbit	opic3c:0.0	оріс3с	N/A	2015	орі	Mon Nov 25 11:52:26 200	CORR	Warn	Note	N/A 0	*** @Correction # 182: 2 with BAD efficiency ***	PROGRAM BRANCH/FLOV
Orbit	opic3c:0.0	орісЗс	N/A	2015	opi	Mon Nov 25 11:52:35 200	CORR	Warn	Note	N/A 0	*** @Correction # 184: 2 with BAD efficiency ***	PROGRAM BRANCH/FLOV
Orbit	opic3c:0.0	оріс3с	N/A	2015	орі	Mon Nov 25 11:52:39 200	CORR	Warn	Note	N/A O	*** @Correction # 185: 1 with BAD efficiency ***	PROGRAM BRANCH/FLOV
Orbit	opic3c:0.0	оріс3с	N/A	2015	орі	Mon Nov 25 11:53:33 200	CORR	Warn	Note	N/A O	*** @Correction # 197: 1 with BAD efficiency ***	PROGRAM BRANCH/FLOV
Orbit	opic3c:0.0	орісЗс	N/A	2015	орі	Mon Nov 25 11:53:46 200	CORR	Info	Note	N/A 0	# 1066 (200) 192.290943 mA -0.113091 h: H# 48/-48 O 0.006890/-917262023 P 0.00	PROGRAM RESULT,CALC
Orbit	opic3c:0.0	оріс3с	N/A	2015	орі	Mon Nov 25 11:56:57 200	CORR	Warn	Note	N/A O	*** @Correction # 244: 1 with BAD efficiency ***	PROGRAM BRANCH/FLOV
Orbit	opic3c:0.0	оріс3с	N/A	2015	орі	Mon Nov 25 11:58:28 200	CORR	Warn	Note	N/A O	*** @Correction # 266: 1 with BAD efficiency ***	PROGRAM BRANCH/FLOV
Orbit	opic3c:0.0	орісЗс	N/A	2015	орі	Mon Nov 25 11:59:13 200	CORR	Warn	Note	N/A 0	*** @Correction # 277: 1 with BAD efficiency ***	PROGRAM BRANCH/FLOV
Orbit	opic3c:0.0	оріс3с	N/A	2015	орі	Mon Nov 25 12:00:50 200	CORR	Info	Note	N/A O	# 1272 (300) 245.717424 mA 3.754377 h: H# 48/-48 O 0.002781/-375578597 P 0.0026	PROGRAM RESULT,CALC
Orbit	opic3c:0.0	оріс3с	N/A	2015	орі	Mon Nov 25 12:07:51 200	CORR	Info	Note	N/A O	# 1476 (400) 238.219165 mA 3.833817 h: H# 48/-48 O 0.002651/490312062 P 0.00265	PROGRAM RESULT,CALC
Orbit	opic3c:0.0	оріс3с	N/A	2015	орі	Mon Nov 25 12:20:38 200	CORR	Warn	Note	N/A 0	*** @Correction # 464: 1 with BAD efficiency ***	PROGRAM BRANCH/FLOV
Orbit	opic7c:0.0	opic7c	N/A	18535	орі	Mon Nov 25 12:21:56 200	Meas	Err	Warn	N/A O	Persistent AGC Error at BPMZ4D2R (# 290901)	PROGRAM RESULT,CALC
Orbit	opic7c:0.0	opic7c	N/A	18535	орі	Mon Nov 25 12:21:56 200	Meas	Warn	Note	N/A O	BPMZ4D2R at 27.264000 m disapp.(# 12 x=32.736000 <nxt 32.736000="" m="">)</nxt>	PROGRAM NOTIFICATION
Orbit	opic3c:0.0	opic3c	N/A	2015	орі	Mon Nov 25 12:22:01 200	Meas	Err	Warn	N/A 0	Persistent AGC Error at BPMZ4D2R (# 1887)	PROGRAM RESULT, CALC
Orbit	opic3c:0.0	оріс3с	N/A	2015	opi	Mon Nov 25 12:23:07 200	CORR	Info	Note	N/A O	# 1919 (500) 24.534314 mA -0.015123 h: H# 48/-48 O 0.017755/347849652 P 0.0177	PROGRAM RESULT, CALC
Orbit	opic7c:0.0	opic7c	N/A	18535	opi	Mon Nov 25 12:23:49 200	Meas	Warn	Note	N/A O	BPMZ4D2R at 27.264000 m reapp.(# 12 s=32.736000 <prv 26.005000="" m="">)</prv>	PROGRAM NOTIFICATION
Orbit	opic3c:0.0	opic3c	N/A	2015	opi	Mon Nov 25 12:24:00 200	CORR	Warn	Note	N/A 0	*** @Correction # 513: 2 with BAD efficiency ***	PROGRAM BRANCH/FLOV
Orbit	opic3c:0.0	opic3c	N/A	2015	орі	Mon Nov 25 12:24:04 200	CORR	Warn	Note	N/A 0	*** @Correction # 514: 1 with BAD efficiency ***	PROGRAM BRANCH/FLOV
Orbit	opic3c:0.0	opic3c	N/A	2015	орі	Mon Nov 25 12:28:28 200	CORR	Warn	Note	N/A O	*** @Correction # 576: 1 with BAD efficiency ***	PROGRAM BRANCH/FLOV
Orbit	opic3c:0.0	opic3c	N/A	2015	opi	Mon Nov 25 12:30:08 200	CORR	Info	Note	N/A 0	# 2123 (600) 100.124077 mA 7.918975 h: H# 48/-48 O 0.003079/-786256207 P 0.003	PROGRAM RESULT,CALC
Orbit	opic3c:0.0	opic3c	N/A	2015	орі	Mon Nov 25 12:36:02 200	CORR	Warn	Note	N/A 0	*** @Correction # 631: 1 with BAD efficiency ***	PROGRAM BRANCH/FLOV
Orbit	opic3c:0.0	opic3c	N/A	2015	opi	Mon Nov 25 12:40:51 200	CORR	Info	Note	N/A 0	# 2435 (700) 108.108340 mA -0.072203 h: H# 48/-48 O 0.008520/-1639597794 P 0.0	PROGRAM RESULT, CALC
Orbit	opic3c:0.0	opic3c	N/A	2015	opi	Mon Nov 25 12:45:43 200	CORR	Warn	Note	N/A 0	*** @Correction # 767: 1 with BAD efficiency ***	PROGRAM BRANCH/FLOV
Orbit	opic3c:0.0	opic3c	N/A	2015	opi	Mon Nov 25 12:48:00 200	CORR	Info	Note	N/A 0	# 2643 (800) 253.268979 mA 3.813557 h: H# 48/-48 O 0.002822/-1720145895 P 0.002	PROGRAM RESULT, CALC
Orhit	onic3c:0.0	onic3c	N/A	2015	oni	Mon Nov 25 13:13:50 200	COBR	Warn	Note	I N/A I n	*** @Correction # 872: 1 with BAD efficiency ***	PROGRAM BRANCH/ELOV
Thu Nov 28 16:36:19 2002 From Mon Nov 25 03:31:14 2002 To Wed Nov 27 16:31:14 2002												

Roland Müller BESSY

Beam Orbit Stabilization at BESSY II - IWBS '02 – Spring8

Unexpected Events

- New, unexplainable orbit jumps appear: Phase analysis points to a ring segment with NO active element
- Pattern of perturbation corresponds to users time slots.

Beam Orbit Stabilization at BESSY II - IWBS '02 - Spring8

Behind RMS: Deviations/Angles

- User magnet causes 4 μm, 1μrad peak perturbation
 - Corrected within 2 cycles.
 - Obvious required counter-measures:
 - Distance, shielding, local feed-forward.
 - Inadequate: fast local ID source point feed-back.

Present Choice: New Location

50 Hz Mains Suppression

Fast BPM signal analysed. Put air coil corrector at optimal position. Feed-forward compensation proves feasibility. Users don't suffer, most detectors average with same frequency: not used

Vibrations

- Tunnel, experimental floor well characterized:
- •Frequency
- •Magnitude
- •Critical components, major sources identified.
- •Consequences for beam-line design: vibration damped BL elements.

Roland Müller BESSY

Beam Orbit Stabilization at BESSY II - IWBS '02 – Spring8

Stability: Spectral Overview

-80 Diode @ experiment GaAs-Diode. **UE52-SGM** SMU position booster 400 eV -90 Pumps Metric: achievable 50Hz GaAs-diode signal (dB) -100 -120 -130 U\$V signal/noise ratio WLS T7 girder Dominant: WLS T7 M-pumps WLS PTB LHe recondensor White circuit Gyro mains Difference frequency visible to orbit correction -140 -150 0.1 10 100 frequency (Hz)

Comparison of Sensitivities

Roland Muller BESSY

Beam Orbit Stabilization at BESSY II - IWBS '02 - Spring8

Conclusions

- RF-BPM and XBPM diagnostic: precise, consistent, complementary.
- Growing understanding of sources and feasible countermeasures.
- Effect on experiments widely varying.
 - IR beam-line most sensitive.
- Perturbations tied to beam-line and beam orbit are of similar order.
- Improvement attempts have to consider both areas.