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Slow orbit control

Installation of mechanical damping links

Fast orbit control
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E.S.R.F Parameters

H V

Energy 6 GeV

circumference 844.39 m

emittances 4.0 nm 30 pm

Stability criterion

Emittance growth 20%

Fraction of beam size 10%

Fraction of divergence 10%

Reference: middle of a high-β straight section:

H V

β-function 35.1 2.5

Beam size 380 µm 9 µm

Required stability 38 µm 0.9 µm
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 Slow orbit control

BPMs

� 224 BPMs for a tune of 36.44 / 14.39

� Resolution: 1 µm with averaging

6 x 10ms samples, spaced in opposite phase for 7Hz,
main perturbation. The corresponding error on beam
stability (for βBPM = 20m) is:

H V

emittance growth 0.73% 8%

fraction of beam size 0.36% 4%

fraction of divergence 0.36% 4%

This is not negligible in the vertical plane. Using a
global correction method improves this number by
eliminating uncorrelated errors.

� Offset calibration

Performed by varying the current in the quadrupole
supporting each BPM. Resolution: 20 µm

Periodic update necessary because of:

• Ageing (cables…)
• Replacement of multiplexors
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� Calibration of drifts with beam intensity

Calibration using statistics on beam with a permanent
smooth orbit correction: the real beam motion induced
by possible magnet displacement is mostly corrected,
while the uncorrelated BPM drifts are not. Very slow
motion is eliminated.
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BPM drift with beam intensity (4 weeks)

The process can be iterated.

The drift depends on the fillin pattern

The drift is shared between

• mechanics (thermal displacement)
• electronics (differential saturation)

Periodic update is also necessary to take into account:

• Ageing
• Replacement of multiplexors
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Steerers

96 steerers in each plane

Combined function correctors using additional coils on
sextupole yokes.

15-bit DAC

The resolution was improved by reducing the full range by
a factor 4.

H V
Range (mrad) 0.66 0.41
Resolution (mrad) 4.1 10-6 2.6 10-6

Consequently, the errors made when setting a global
correction (96 random errors) are:

H V

Emittance growth 0.24% 1.52%

Fraction of beam size 0.12% 0.76%

Fraction of divergence 0.12% 0.76%

For resolution errors, the BPMs are now slightly
dominating.
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Correction method

Global correction by SVD method applied every 30 s.

Using measured response matrices.

Using a limited number of Eigen vectors to limit the
sensitivity to BPM drift and resolution errors.

Target: zero orbit (no “golden orbit” definition).

Horizontally:

� 224 BPMS + constraint on steerers: ∑I = 0

� 96 steerers + RF frequency

This is to avoid any influence of orbit control on beam
energy.

Vertically

� 224 BPMs

� 96 vertical steerers

The choice of the optimum number of Eigen vectors is
based on an estimate of the amplitude of BPM drifts.

Control

� Electron BPMs: as we have much more BPMs than
steerers, we can have “independent” monitors.

� Pinhole cameras

� X-BPMs:
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Influence of RF frequency control:
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Evolution on the RF frequency over 1 run

� Daily evolution: without correction, ± 10Hz would give
∆E/E=±1.5 10-4

� Slow fluctuation
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Long term performance

Data taken over a full run: 7 weeks.

The values are averaged over slices of 15 minutes.

The beam position is computed in the middle of straight
sections.

All 16 sections superimposed
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Horizontal
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Horizontal beam position in high- β sections

Horizontal beam motion
in the middle of high-β straight sections

(βx = 35.1 m, σx = 380 µm)

� 10% of horizontal beam size achieved over 6 weeks

� visible influence of the filling pattern

10% of
beam
size

Uniform filling Hybrid Single
bunch
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Vertical
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Vertical beam position in high- β sections

Vertical beam motion
in the middle of high-β straight sections

(βz = 2.5 m, σz = 9 µm)

� 10% of beam size are exceeded

� influence of the filling pattern

� problem of referential: the ground itself is not an
absolute reference in that range.

10% of
beam
size

Uniform filling Hybrid Single
bunch
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Medium term stability

The beam position is computed in the middle of straight
sections.

The position sampled every minute.

Integration over 60 ms.

2 days, uniform filling.
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Beam position in high- β section
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Beam motion in the middle of a high-β straight section
(βx = 35.1 m, σx = 380 µm)

(βz = 2.5 m, σZ = 9 µm)

Rms: 4.1 µm

Rms: 1.1 µm



12

L Farvacque, E.S.R.F

Example of bad behaviour: Air temperature control
in the tunnel

The tunnel is split in 4 quadrants, cooled air is injected at
one end of each quadrant and extracted at the other end.

Initially, the regulation sensor was near the extraction end
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Before modification

We see very large oscillations of the temperature of
injected air (very long delay in the regulation loop).

extraction

injection
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The regulation sensor was then moved to the injection
end
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After modification

Improvement on long-term stability
Faster stabilization after shutdown

Conclusion

� Unfortunately, with this method of ventilation, we
cannot avoid a large temperature gradient along the
section, varying with:

• Magnet powering
• Stored beam

� However, the way the regulation is done has a strong
influence.
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 Installation of damping links

Design

GMF :
Girder Mounting Fixture

FMF :
Floor Mounting Fixture

VEM :
ViscoElastic Material
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Performance

horizontal plane

Measurement with feedback BPMs
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Single-side PSD of horizontal beam motion
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Fast orbit control

BPMS
Dedicated BPMs, located at the end of straight sections

� Higher sensitivity (larger buttons, smaller vertical
aperture).

� Dedicated electronics: low noise. Resolution 20 nm/√Hz

� Beam intensity range: 5 mA to 200 mA

� Multiplexed system, sampling frequency 4.4 kHz

� We do not care about long term stability, drifts

Steerers

� Air coils, located et the end of straight sections (around
bellows)

� bandwidth limited by the vacuum chamber.

� Range: 40 µrad

System

� Digital, DSP based system

� The loop runs at 4.4 kHz

� Bandwidth 0.1 - 200 Hz. We eliminate the DC
component. The decoupling between slow control and
feedback is made by in the frequency domain.

Control
BPMs: 4.4kHz sampling, 1024 points archived per sample

• Frequency resolution 4.3 Hz
• Bandwidth 200Hz
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Performance
Horizontal plane

� 4 independent local horizontal feedbacks using 2 BPMs
and 4 kickers (closed bumps)
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Horizontal beam motion in high-β straight sections

+ Very efficient

— Limited control: no independent BPM

— No fault tolerance: any failure causes the feedback to
stop

— Cannot be generalised (crosstalk)

— Matching (lever arm / β-function) not optimal
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Vertical plane

� Global vertical feedback

� 16 BPMs, 16 steerers

� SVD algorithm, PID applied to correction Eigen vectors.
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Vertical beam motion in high-β straight sections

— Limited efficiency: After improvements of H/V coupling
and addition of damping links, the vertical motion is
so small that the feedback efficiency is limited by the
noise level.

+ We have a number of independent BPMs that can
monitor the performance

+ Runs well in case on BPM or steerer failure
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Time domain
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Limitations:

� The bandwidth is limited by the steerer design: eddy
currents in the vacuum chamber.

� The noise level is limited by the BPMs (multiplexing
technology)

New developments

Replacement of all the horizontal local feedbacks by a
global feedback.

� using 32 BPMs and 32 steerers (higher horizontal
tune).

� Higher above the noise level (efficiency should be
better)

� New hardware for the digital part.

Expected gain:

� Beneficial everywhere around the machine

� High reliability: can work with missing BPMs and
steerers
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Performance summary

The broadband PSD can be plotted using several
diagnostics:

• Low frequency: standard BPM archived in the history
database and averaged over slices of 8 minutes.

• Medium frequency: live reading of standard BPMs:
1Hz sampling frequency

• High frequency: statistics on fast BPMs: 4.4 kHz
sampling frequency

Frequency domain
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Beam motion on straight section BPMS
(βx = 35.4 m, βZ = 6.2 m)
(σx = 360 µm, σZ = 15 µm)

Caution
Data at low frequency assume that the monitors are “fixed
points”

H 11 µm
V 8 µm

H 4.2 µm
V 2 µm

H 4 µm (no feedback)
V 0.6 µm (feedback)
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Time domain

r.m.s. beam position on straight section BPMs

Horizontal (βx = 35.4 m)
4-12 Hz 4-200 Hz

no damping links (µm) 10 12
with damping links (µm) 2.7 4
damping links+feedback (µm) 0.28 1

Vertical (βz = 6.2 m)
4-12 Hz 4-200 Hz

no damping links (µm)
with damping links (µm) 0.5 1
damping links+feedback (µm) 0.17 0.6

Conclusion

The combination of slow control and mechanical damping
brings the vibration level to an acceptable level (less than
10% of beam size). However some users require a much
better stability. This can be achieved by feedback.

Reaching the micron range requires the combination of all
the available approaches.

The amplitude of very slow motion is still dominant.


