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Abstract

We propose single-loop multi-dimensional feedback with digital signal processing using finite

impulse response (FIR) filters. With this scheme, a feedback controls beam oscillations multi-

dimensionally with a single beam position signal and a single kick signal. This scheme simplifies

the feedback system and reduces the number of components, related tuning points, and cost. Single-

loop horizontal and vertical two-dimensional transverse feedback systems based on this scheme are

in operation at several storage rings. We also show a scheme of a longitudinal feedback with a

transverse feedback system which measures the position at a dispersive section to detect energy

shift and kicks transversely at a dispersive section to change the circumference of a ring. This

leads to an idea of a single-loop three-dimensional feedback including longitudinal motion and we

discussed the possibility of this scheme by showing the ratio of the transverse and longitudinal

dynamic range and required power. For the calculation of the coefficients of FIR filters for such

feedback systems, we developed a time domain least square fitting method and, with this method,

we can make FIR filters with arbitrary large number of taps with which we can reduce noise to

avoid saturation of the feedback system. This method is intuitive and easy to apply to actual

storage rings. We discuss several examples of feedback with FIR filters obtained with this method,

including the analysis of the stability of the feedback with FIR filters to show the available shortest

damping time, and the discussion for the reduction of noise with those FIR filters.
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I. INTRODUCTION

A feedback system for transverse betatron oscillation or longitudinal synchrotron oscil-

lation of a storage ring is an effective device for suppression of beam instabilities that limit

the current and the quality of the stored beam. Moreover, the feedback system can rapidly

damp beam oscillations excited by injection perturbations [1, 2] that are harmful to user

experiments at top-up operation of light source storage rings. Also this system is discussed

as a device to suppress beam instabilities at energy recovery linacs [3]. The feedback system

detects transverse or longitudinal positions of a beam, processes the position data to create

a kick signal, and adds transverse or longitudinal kick to the bam to damp the oscillations of

the beam. Recent feedback systems [4–44] employ digital signal processing and most of them

use finite impulse response (FIR) filters as the algorithm for the digital signal processing.

Because of their simplicity, FIR filters are used in bunch-by-bunch feedback systems that

must process the beam position data at the bunch rate of hundreds of Megahertz within

hundreds of nanoseconds.

In this study, we propose single-loop multi-dimensional feedback systems, in which the

feedback uses a single position signal and a single kick signal to control the beam oscillations

multi-dimensionally. For the calculation of the coefficients of FIR filters for such feedback

scheme, we propose the time domain least square fitting method (TDLSF method) which

can calculate the coefficients of FIR filters with arbitrary large number of taps. Such FIR

filters can suppress noise to avoid the saturation of the feedback system. Also the TDLSF

method is intuitive and, thus is easy to apply to actual storage rings. The basic concept of

the TDLFS method is briefly described in Ref. [28] by the author; we will discuss the detail

in this study. The discussion of FIR filters for feedback including the TDLSF method is in

Ref. [45], for example.

Single-loop two-dimensional horizontal and vertical bunch-by-bunch feedback systems

based on the scheme have been successfully tested or are in operation in several storage

rings [30, 31, 34–37] with high-performance feedback processors [29] which are necessary to

process the many taps FIR filters required for such single-loop multi-dimensional feedback

systems. The coefficients of FIR filters for those systems are calculated by the TDLSF

method. In addition, the TDLSF method is also employed at the HLS ring [38] and consid-

ered at the APS ring [40].
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To control the longitudinal motion, we can use a change in the circumference of a ring

produced by a kick at a dispersive section [46]. Based on this concept, several schemes

for single-loop horizontal-longitudinal feedback have already been proposed by Chao et al.

[47]. However, they did not show the possibility of the scheme of longitudinal feedback with

a transverse feedback system at a dispersive section, in which a transverse position and a

transverse kick are used as the input and the output of the feedback, respectively. Contrary

to their result, we show that such a system can be realized using a digital signal processing

scheme with an FIR filter, and we propose a single-loop three-dimensional feedback system

that can simultaneously control horizontal, vertical and longitudinal oscillations. First, we

describe the TDLSF method and then we discuss single-loop multi-dimensional feedback

with FIR filters obtained with this method.

II. TIME DOMAIN LEAST SQUARE FITTING METHOD

A. Position and Kick for Feedback

We will discuss FIR filters for feedback systems. An FIR filter has a form of

y[n] =

N
∑

k=0

akxn−k (1)

where xk is the k-th input data, y[n] is the n-th output data, ak is the k-th coefficient of the

FIR filter, and the number of input data, N + 1, is called the number of taps. For feedback

systems, the input xk is proportional to the measured beam position data at the k-th turn

and the output y[n] is proportional to the kick on the beam at the n-th turn as shown in

Fig. 1.

We propose the TDLSF method to calculate the coefficients ak of the FIR filter for

feedback. The position of a beam at the k-th turn, x[k], is produced by the betatron and/or

synchrotron oscillations of the beam and has the form of

x[k] = A(0) cos
(

∆
(0)
k + ψ(0)

)

+
M

∑

m=1

A(m) cos
(

(1 + ∆(m))φ
(m)
k + ψ(m)

)

(2)

where M is the number of oscillations of the beam and the superscript (m) specifies these

oscillations; A(m) and ψ(m) are the amplitudes and the offset phases, respectively; φ
(m)
k and

(

1 + ∆(m)
)

φ
(m)
k are the assumed and actual phase advances at the k-th turn, respectively;
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FIG. 1: An FIR filter for feedback on a storage ring. The filter produces a kick signal y[n] (dotted

line) turn-by-turn from the history of turn-by-turn beam position data xk (solid line). The figure

illustrates transverse feedback with a beam position monitor and a kicker placed at the same

location. In such a case, the required phase shift between the beam position and the kick is −90

deg.

and ∆
(0)
k is the small phase change that represents the frequency response in the vicinity of

DC.

By defining

P (m) = A(m) cosψ(m) (3)

Q(m) = −A(m) sinψ(m) , (4)

we can rewrite Eq. (2) as

x[k] = P (0) cos ∆
(0)
k +Q(0) sin ∆

(0)
k

+
M

∑

m=1

[

P (m) cos
(

(1 + ∆(m))φ
(m)
k

)

+Q(m) sin
(

(1 + ∆(m))φ
(m)
k

)]

. (5)

We assume that the shift of the actual phase advances from the assumed phase advances

are small as

|∆
(0)
k | << 1 (6)

|∆(m)φ
(m)
k | << 1. (7)

For the definition of ∆
(0)
k in Eq. (5), we have an ambiguity and we can set ∆

(0)
k = k∆(0).
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Then we can express the first two terms of the R.H.S. of Eq. (5) as

P (0) cos ∆
(0)
k +Q(0) sin ∆

(0)
k ≃ P (0) +Q(0)∆(0)k = P

(0)
0 +Q

(0)
1 k (8)

where we define

P
(0)
0 = P (0) (9)

Q
(0)
1 = Q(0)∆(0). (10)

With the assumption in Eq. (7), we can expand the other terms on the R.H.S. of Eq. (5)

as

P (m) cos(1 + ∆(m))φ
(m)
k ≃ P

(m)
0 cos φ

(m)
k + P

(m)
1 φ

(m)
k sinφ

(m)
k

(11)

Q(m) sin(1 + ∆(m))φ
(m)
k ≃ Q

(m)
0 cosφ

(m)
k +Q

(m)
1 φ

(m)
k cosφ

(m)
k

(12)

where we define

P
(m)
0 = P (m) (13)

P
(m)
1 = −P (m)∆(m) (14)

Q
(m)
0 = Q(m) (15)

Q
(m)
1 = Q(m)∆(m). (16)

Now, Eq. (5) can be expressed with them as

x[k] = P
(0)
0 +Q

(0)
1 k

+

M
∑

m=1

(

P
(m)
0 cosφ

(m)
k + P

(m)
1 φ

(m)
k sinφ

(m)
k +Q

(m)
0 sinφ

(m)
k +Q

(m)
1 φ

(m)
k cosφ

(m)
k

)

(17)

with the assumption of Eqs. (6) and (7).

For the feedback, the output of FIR filters (Eq. (1)) with the input xk = x[k] in Eq. (5)

should have the form of

y[k] = G(0)A(0) cos
(

∆
(0)
k + ψ(0)

)

+
M

∑

m=1

G(m)A(m) cos
(

(1 + ∆(m))(φ
(m)
k + ϕ(m)) + ζ (m)

)

(18)
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where G(m) and ζ (m) are the required gain and phase shift for the feedback, respectively,

and ϕ(m) and (1 + ∆(m))ϕ(m) are the assumed and actual phase advances from the beam

position monitor (BPM) to the kicker, respectively. We assume that the shift of this phase,

∆(m)ϕ(m), is proportional to the shift of the phase advance, ∆(m)φ
(m)
k . Without the loss of

generality, we can assume that k = 0 and φ
(m)
0 = 0 at the current turn and obtain

y[0] = G(0)A(0) cosψ(0) +
M

∑

m=1

G(m)A(m) cos
(

(1 + ∆(m))ϕ(m) + ζ (m)
)

. (19)

With the same treatment as for x[k], we obtain

y[0] = G(0)P
(0)
0

+
M

∑

m=1

G(m)
(

P
(m)
0 cos ζ (m) + P

(m)
1 ϕ(m) sin ζ (m) +Q

(m)
0 sin ζ (m) +Q

(m)
1 ϕ(m) cos ζ (m)

)

. (20)

Now we need to find an FIR filter that connects x[k] in Eq. (17) and y[0] in Eq. (20) with

the required values of G(m), ζ (m), φ
(m)
k and ϕ(m).

B. Least Square Fitting

x[k] in Eq. (17) is the linear function of P
(m)
0 , Q

(m)
0 , P

(m)
1 , and Q

(m)
1 . If we assume that

P
(m)
0 , Q

(m)
0 , P

(m)
1 , and Q

(m)
1 are all independent of each other, we obtain P

(m)
0 , Q

(m)
0 , P

(m)
1 ,

and Q
(m)
1 as linear functions of measured position data xk by fitting the function x[k] to xk

with a least square fitting method. As we can see in Eq. (20), y[0] is also a linear function

of P
(m)
0 , Q

(m)
0 , P

(m)
1 , and Q

(m)
1 . Thus, we can represent y[0] as a linear function of xk as in

Eq. (1) and the coefficients of xk are coefficients of the required FIR filter.

In reality, the parameters P
(m)
0 , Q

(m)
0 , P

(m)
1 , and Q

(m)
1 are not independent as shown in

Eqs. (13) to (16). However, if the position data xk is that of a sinusoidal oscillation, the

values of P
(m)
0 , Q

(m)
0 , P

(m)
1 , and Q

(m)
1 obtained with this scheme automatically fulfill the

relationships in Eqs. (13) to (16) in the vicinity of assumed phase advances φ
(m)
k where

Eq. (7) is valid. In following examples, we will see the FIR filters obtained with this method

have the expected frequency responses.

Applying the least square fitting method to fit x[k] to xk, we obtan

∂S

∂P
(m)
i

=
∂S

∂Q
(m)
i

= 0 (21)

i = 0, 1 and m = 0, 1, 2, . . . ,M (22)
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for

S =

N
∑

k=0

(x[−k] − x−k)
2, (23)

and Eq. (21) can be rewritten as

N
∑

k=0

∂x[−k]

∂P
(m)
i

x[−k] =

N
∑

k=0

∂x[−k]

∂P
(m)
i

x−k (24)

N
∑

k=0

∂x[−k]

∂Q
(m)
i

x[−k] =
N

∑

k=0

∂x[−k]

∂Q
(m)
i

x−k. (25)

Applying x[k] in Eq. (17) to the above equations, we obtain a matrix equation:

CCTv = Cx (26)

where we define vectors v and x, and a matrix C as

v =

























































P
(0)
0

Q
(0)
1

P
(1)
0

Q
(1)
0

P
(1)
1

Q
(1)
1

P
(2)
0

Q
(2)
0

P
(2)
1

Q
(2)
1

...

























































,x =



























x0

x−1

x−2

x−3

...

x−N



























, (27)
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C =

























































1 1 1 . . . 1

0 −1 −2 . . . −N

C
(1)
0 C

(1)
−1 C

(1)
−2 . . . C

(1)
−N

S
(1)
0 S

(1)
−1 S

(1)
−2 . . . S

(1)
−N

φ
(1)
0 S

(1)
0 φ

(1)
−1S

(1)
−1 φ

(1)
−2S

(1)
−2 . . . φ

(1)
−NS

(1)
−N

φ
(1)
0 C

(1)
0 φ

(1)
−1C

(1)
−1 φ

(1)
−2C

(1)
−2 . . . φ

(1)
−NC

(1)
−N

C
(2)
0 C

(2)
−1 C

(2)
−2 . . . C

(2)
−N

S
(2)
0 S

(2)
−1 S

(2)
−2 . . . S

(2)
−N

φ
(2)
0 S

(2)
0 φ

(2)
−1S

(2)
−1 φ

(2)
−2S

(2)
−2 . . . φ

(2)
−NS

(2)
−N

φ
(2)
0 C

(2)
0 φ

(2)
−1C

(2)
−1 φ

(2)
−2C

(2)
−2 . . . φ

(2)
−NC

(2)
−N

...

























































, (28)

respectively, and

C
(m)
k = cosφ

(m)
k (29)

S
(m)
k = sin φ

(m)
k . (30)

The formal solution of Eq. (26) is

v = Dx (31)

D = (CCT )−1C. (32)

From Eq. (31), we obtain

P
(0)
0 =

N
∑

k=0

D1,kx−k (33)

Q
(0)
1 =

N
∑

k=0

D2,kx−k (34)

P
(m)
0 =

N
∑

k=0

Djm,kx−k (35)

Q
(m)
0 =

N
∑

k=0

Djm+1,kx−k (36)

P
(m)
1 =

N
∑

k=0

Djm+2,kx−k (37)

Q
(m)
1 =

N
∑

k=0

Djm+3,kx−k (38)
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where we define jm so that the jm-th, (jm + 1)-th, (jm + 2)-th and (jm + 3)-th components

of the vector v are P
(m)
0 , Q

(m)
0 , P

(m)
1 and Q

(m)
1 , respectively.

Then, inserting these to y[0] in Eq. (20), we can represent y[0] as a linear function of xk,

or the form for an FIR filter as

y[0] =

N
∑

k=0

akx−k (39)

ak = G(0)D1,k +
M

∑

m=1

G(m)
(

Djm,k cos ζ (m) +Djm+2,kϕ
(m) sin ζ (m)

+Djm+1,k sin ζ (m) +Djm+3,kϕ
(m) cos ζ (m)

)

. (40)

Although we showed the case of first-order expansions on ∆(m) in the above discussion,

the extension to higher-order expansions on ∆(m) is easy. In what follows, we define O(m)

to show the order of the expansions on ∆(m).

The required conditions for an FIR filter can be represented with assumed phase advances

φ
(m)
k , gains G(m), phase shifts ζ (m), assumed phases from a BPM to a kicker ϕ(m), and orders

O(m). The total number of constraints on the coefficients of the FIR filter is

Nc =

M
∑

m=0

(1 +O(m))(2 − δm,0) (41)

where δm,0 comes from the fact that the frequency of m = 0 is zero where the phase advance

ζ (0) does not exist. The number of taps must be greater than or equal to Nc.

C. Discussion

We will discuss the FIR filter obtained by the TDLSF method and define several param-

eters for later discussion. First, we will show the behavior of large number tap FIR filters

obtained by the TDLSF method. If the input data has the form of

xk =
M ′

∑

m′=1

(

P (m′) cosφ′(m
′)

k +Q(m′) sinφ′(m
′)

k

)

(42)

where φ′(m
′)

k (m′ = 1, 2, . . . ,M ′) is far from the target phase advances φ
(m)
k (m =

0, 1, 2, . . . ,M). If we assume that N is large so enough as φ′(m
′)

N − φ
(m)
N >> 2π and
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φ′(m
′)

N >> 2π, then we can use the following approximations:

1

N

N
∑

k=0

C ′(m
′)

−k ∼
1

N

N
∑

k=0

S ′(m
′)

−k ∼ 0 (43)

1

N

N
∑

k=0

kC ′(m
′)

−k ∼
1

N

N
∑

k=0

kS ′(m
′)

−k ∼ 0 (44)

1

N

N
∑

k=0

C
(m)
−k C

′(m
′)

−k ∼
1

N

N
∑

k=0

S
(m)
−k S

′(m
′)

−k ∼ 0 (45)

1

N

N
∑

k=0

C
(m)
−k S

′(m
′)

−k ∼
1

N

N
∑

k=0

S
(m)
−k C

′(m
′)

−k ∼ 0 (46)

1

N

N
∑

k=0

φ
(m)
k C

(m)
−k C

′(m
′)

−k ∼
1

N

N
∑

k=0

φ
(m)
k S

(m)
−k S

′(m
′)

−k ∼ 0 (47)

1

N

N
∑

k=0

φ
(m)
k C

(m)
−k S

′(m
′)

−k ∼
1

N

N
∑

k=0

φ
(m)
k S

(m)
−k C

′(m
′)

−k ∼ 0 (48)

where we define

C ′(m)
k = cosφ′(m

′)
k (49)

S ′(m)
k = sinφ′(m

′)
k . (50)

Then, from Eqs. (31) and (32) with the above approximations, we obtain

v = Dx = 0, (51)

or P
(0)
0 = Q

(0)
1 = 0 and P

(m)
0 = Q

(m)
0 = P

(m)
1 = Q

(m)
1 = 0 for m 6= 0. Thus, we obtain

the output of the FIR filter y[n] = 0 for the input of xk in Eq. (42). This results shows

that we can reduce the gain at phase advances other than the target phase advances just by

increasing the number of taps and this is the advantage of the TDLSF method. However,

the regions where the frequency response is insensitive to the tune shift around the target

tunes become narrower as N increases because the assumption ∆(m)φ
(m)
−N << 1 based on

Eq. (7) breaks even for small ∆(m) for large N .

When the beam position is measured turn-by-turn as in a storage ring, we can set the

assumed phase advances to be

φ
(m)
k = 2π∆ν(m)k (52)
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where ∆ν(m) are the fractional part of the assumed tunes of betatron or synchrotron oscil-

lations. For this case, we can write the required condition to calculate the FIR filter with

the TDLSF method as a set of parameters of

{(

G(0), O(0)
)

,
{(

∆ν(m), G(m), ζ (m), ϕ(m), O(m)
)

|m = 1, 2, 3, . . . ,M
}}

. (53)

In the following sections, we call ∆ν(m) the ”target tunes” of an FIR filter. In the examples

shown in later sections, we assume that a BPM and a kicker are placed at the same location

(ϕ(m) = 0) and, in such cases, we omit ϕ(m) in the above condition. With the definition of k

in Eq. (52), the number of taps is the number of non-zero coefficients of ak in this case.We

need to set ak = 0 for k ≤ n− 1 for n-turn delay. Here, we use ”n-turn delay” to show how

many turns for the kick signal from the feedback to catch the beam at the kicker after the

position measurements of which position data is used to create this kick.

If the input and output of the FIR filter, x[n] and y[n], respectively, are the oscillations

with the tune ∆ν, then, we can set

x[n] = ℜ[x̃ein2π∆ν ] (54)

y[n] = ℜ[ỹein2π∆ν ], (55)

and we call x̃ and ỹ the complex amplitude of x[n] and y[n]. For the such input and output,

we have frequency response of the FIR filter in Eq. (1) as

ỹ = G̃(∆ν)x̃ (56)

G̃(∆ν) = G(∆ν)eiζ(∆ν) =
N

∑

k=0

ake
−ik2π∆ν (57)

where the gain and the phase of the FIR filter are G(∆ν) = |G̃(∆ν)| and ζ(∆ν) =

arg[G̃(∆ν)], respectively.

In some cases, noise in the output of FIR filters saturates a power amplifier for a kicker

or prevents us to observe the beam motion. Such noise is usually produced in front-end

circuits and passes through the FIR filter. The FIR filter for the feedback can be used also

for the filter of the noise. If we assume that the spectrum of the noise in the input to the

FIR filter is white, the noise power in the output of the FIR filter is proportional to

P =

∫ 1

0

∣

∣

∣
G̃(∆ν)

∣

∣

∣

2

d(∆ν) =

∫ 1

0

∣

∣

∣

∣

∣

N
∑

k=0

ake
−ik2π∆ν

∣

∣

∣

∣

∣

2

d(∆ν) =

N
∑

k=0

a2
k (58)
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where |G̃(∆ν)| is the frequency response of the gain of the filter in Eq. (57). To reduce

the noise in the output of the filter, we need to reduce the gain at tunes other than the

target tunes. As shown above, the TDLSF method can produce any large number of tap

FIR filters without additional constraints and such FIR filters have small gain at tunes other

than target tunes, which make the feedback low noise.

In Appendix VII, we discuss the parameters to be specified for the TDLSF method for

the case with localized sources of tune shifts. And a comparison of the TDLSF method with

a frequency domain approach will be made in Appendix VIII.

III. ONE-DIMENSIONAL FEEDBACK

A. Transverse Feedback

1. FIR Filter

We applied the TDLSF method to obtain FIR filters for the one-dimensional transverse

feedback systems for horizontal and vertical directions at the SPring-8 storage ring [28].

The schemes of the transverse feedback with FIR filters are summarized in Appendix IXA;

we choose the transverse position of the beam as the input to the feedback and the transverse

kick as the output. Then we set K 6= 0 and F = 0 in Eq. (119) in Appendix IXA and the

number of oscillations M in Eq. (2) to one.

In the discussions in this subsection, we assume that FIR filters fulfill the DC condition:

(G(0), O(0)) = (0, 0). (59)

With this condition, FIR filters suppress DC offset contamination in a position signal. The

DC offset is produced by several effects: closed orbit distortions (COD); unequal bunch

signal shapes from BPM electrodes; and reflection at cable connections. The DC offset

drives the kicker if we do not suppress it with the signal processing.

In the SPring-8 storage ring, the horizontal and vertical fractional tunes are 0.15 and

0.35, respectively, and the BPM and the kicker are placed at the same location. Then, from

Eq. (129), the required phase shift is -90 deg. (ζ = −π
2
) as in the case of Fig. 1. The

12



conditions for the FIR filters are

(∆ν,G, ζ, O) =
(

0.15, 1,−
π

2
, 1

)

(60)

for the horizontal feedback and

(∆ν,G, ζ, O) =
(

0.35, 1,−
π

2
, 1

)

(61)

for vertical feedback and we use the 1st order expansion with ∆ν. The gain of the FIR

filters are normalized to the gain at the each target tune. With the above conditions and

Eq. (59), the required minimum number of taps (Eq. (41)) is 5 for both directions.

We use 9-tap FIR filters with the position data at nine previous turns (k =

−1,−2,−3, . . . ,−9), where we use one-turn delay: the coefficient of the 0th turn to zero

(a0 = 0). The calculated coefficients of the FIR filters with the TDLSF method are shown

in Fig. 2 and the frequency responses of those filters are shown in Fig. 3.
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FIG. 2: Coefficients of the 9-tap FIR filters for horizontal and vertical one-dimensional transverse

feedback. The horizontal and vertical target tunes are 0.15 and 0.35, respectively

For comparison, we show the frequency response of a possible 5-tap FIR filter (k =

−1,−3,−5,−7,−9) in Fig. 4. The coefficients of the 5-tap FIR filters for horizontal and

vertical feedback are coincidentally identical in this case. The 5-tap FIR filter have larger

gain than 9-tap filters at tunes other than target tunes because of one more passband

produced by aliasing effect, hence the noise that passes through the 5-tap FIR filter is larger

than that of the 9-tap filters as discussed in Section IIC. We also show the frequency

responses of 15-tap FIR filters with every single turn position data in Fig. 5. The gain at

tunes other than the target tune is smaller than the 9-tap filters, however, the frequency

13
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FIG. 3: Frequency responses of gain and phase of the 9-tap FIR filters for horizontal and vertical

one-dimensional transverse feedback. The horizontal and vertical target tunes are 0.15 and 0.35,

respectively.

response of the gain and phase are more sensitive to the tune shift and the acceptance to

the tune shift is narrower as we mentioned in Section IIB. To fulfill the requirements of

acceptance, stability and noise of the feedback, we need to compare several FIR filters with

different values of N and O(m), and sometimes we need to adjust the frequency response by

shifting the target tune itself. Adding to the above discussion about transverse motion, if
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FIG. 4: Frequency responses of gain and phase of the 5-tap FIR filters for one-dimensional trans-

verse feedback with the position data for 1st, 3rd, 5th, 7th and 9th previous turns. The FIR filters

for horizontal and vertical are coincidentally identical in this case.

a BPM and a kicker for feedback are placed in dispersive sections, such feedback also affects

the longitudinal motion and the consideration on it is necessary as in Section V.
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FIG. 5: Frequency responses of gain and phase of the 15-tap FIR filters for one-dimensional

transverse feedback with the position data of every single turn. The gain at tunes other than the

target tune is smaller than the 9-tap filter, however, the variation of the gain and phase to the

tune shift is larger and the width of the tune acceptance is narrower.

2. Stability

Following the discussion in Appendix IXC, we will analyze the stability of the horizontal

and vertical feedback. For the horizontal feedback for the target tune ∆ν0 = 0.15, the tunes

of 0.056 and 0.24 are on the boundary of the stable region because the phases of the FIR

filter at those tunes are -180 deg. and 0 deg., respectively, as seen in Fig. 3. These are

the proper phases to drive the tune shift from 0.15 to 0.056 and 0.24, respectively, as the

discussion in Appendix IXC.

From Eq. (162) in Appendix IXC, the frequency response of the FIR filter is proportional

to

G̃(∆ν) =
1

2
βK̃(∆ν) sin φ0 (62)

where φ0 = 2π∆ν0, and is shown in Fig. 3 with the normalization of the gain to the value

at the target tune.

For ∆ν1 = 0.056, we obtain
∣

∣

∣
G̃(∆ν0)/G̃(∆ν1)

∣

∣

∣
= 1/1.65 from Fig. 3 and the maximum

stable feedback damping rate per turn from Eq. (166) is

|φI | =

∣

∣

∣

∣

cosφ1 − cosφ0

sin φ0

∣

∣

∣

∣

∣

∣

∣

∣

∣

G̃(∆ν0)

G̃(∆ν1)

∣

∣

∣

∣

∣

= 0.43 × 1/1.65 = 1/3.8 (63)

where we set φ1 = 2π∆ν1. For ∆ν1 = 0.24, we obtain
∣

∣

∣
G̃(∆ν0)/G̃(∆ν1)

∣

∣

∣
= 1/1.1 and |φI | =

1/1.7 which is larger than that for ∆ν1 = 0.056. From those results, the maximum stable
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feedback damping rate is limited by the boundary at tune 0.056 and |φI | = T0/τFB = 1/3.8

or the shortest stable feedback damping time is 3.8T0 where T0 is the revolution period of

the ring.

A simulation was performed with Eq. (119) and the result is shown in Fig. 6, which shows

the emergence and growth of the oscillation of ∆ν = 0.0056 after the 520th turn for the

feedback damping time 3.6T0. The damping time 3.8T0 is the threshold of the instability

because no growth of the oscillation of ∆ν = 0.0056 is seen with this feedback damping time

and it is the shortest stable feedback damping time. This value agrees with the estimated

value above. The growth rate by other effects is set to zero in this simulation.

The results of simulation with finite growth rates are shown in Fig. 7. The figure shows

that the feedback with damping time 5T0 can suppress the growth of the growth time 6T0

and the feedback achieves a high damping rate at the target tune even with high feedback

gain near the edge of stability.

For vertical feedback (∆ν0 = 0.35), the phase is 180 deg at the tune ∆ν1 = 0.45 and the

maximum stable feedback damping rate is T0/τFB = −1/3.3 and the simulation also shows

−1/3.3.

B. Longitudinal Feedback

1. FIR Filter

We will discuss several candidates of FIR filters for longitudinal feedback of the SPring-

8 storage ring. The schemes for longitudinal feedback are summarized in Appendix IXB;

we choose the timing position τ as the input to the feedback and the energy kick U as the

output. Then, we set P 6= 0 andW = K = F = 0 in Eqs. (138) and (139) in Appendix IXB.

The synchrotron tune of the SPring-8 ring is νs = 0.007 and the required phase of an FIR

filter for the damping is 90 deg. as shown in Eq. (152). We use the 2nd order expansion

with the shift of the actual tune from the target tune to obtain wider acceptance to the tune

shift. Thus, the condition for the FIR filter with these parameters is

(∆ν,G, ζ, O) =
(

0.007, 1,
π

2
, 2

)

. (64)

and we set (G(0), O(0)) = (0, 0) for DC.
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FIG. 6: Simulation result of horizontal feedback (∆ν0 = 0.15) with Eq. (119) for several feedback

damping time: 3.6T0 (dotted line), 3.8T0 (dashed line), and 8.7T0 (solid line). With the damping

time of 3.8T0 and 3.6T0, the oscillations of ∆ν1 = 0.056 can be seen after the 520th turn.
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FIG. 7: Simulation result for horizontal feedback (∆ν0 = 0.15) with Eq. (119) with the growth of

the oscillation of two growth times: ∞ (solid line) and 6T0 (dotted line). The feedback damping

time is set to 5T0. The growth is turned on at the 490th turn and the feedback is turned on at the

500th turn.

For the tune of 0.007, we need to treat the position data during more than one hundred

turns to reduce gain at tunes other than the target tune. If we directly apply FIR filters for

that number of taps, the required resources of digital signal processing devices are enormous,

much beyond the capacity of current devices; we must use a scheme to reduce the amount

of position data. For such scheme, we will discuss downsampling and decimation which are

easy to implement to digital signal processing devices by programing.
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FIG. 8: Scheme of decimation. The position data of a bunch during M turns (hatched circles)

are averaged to form an input datum (square boxes) to an FIR filter. From the output data

(non-hatched circles), the input data timing to the filter changes turn-by-turn as in Eq. (66).

With downsampling, an FIR filter samples every M turn position data to reduce the

number of taps. However, such a filter with a large M has many passbands other than the

target tunes by aliasing effect and passes noise in those passbands, as we already saw in the

responses of the 5-tap filters (M=2) for transverse feedback in Fig. 4.

With decimation, the position data of a bunch during M turns are averaged to form

an input datum to an FIR filter as shown in Fig. 8. We call M the factor of decimation.

Compared with downsampling, higher-frequency noise is averaged out by decimation and

the passbands seen in the downsampling FIR filters are suppressed. However, M should be

sufficiently small for the decimation not to averaged out the oscillation itself.

We will discuss the following FIR filters: a 256-tap FIR filter with the data of every single

turn (M = 1), a 16-tap FIR filter with decimation by a factor of 16 (M = 16), and an 8-tap

FIR filter with decimation by a factor of 32 (M = 32).

Since the TDLSF method cannot handle decimation directly, decimation is applied on

the coefficients of the downsampling 16-tap and 8-tap FIR filters, obtained with the TDLSF

method. The downsampling FIR filters have the form of

y
(M)
DS [n] =

N
∑

k=1

akxn−(kM+d−1), (65)
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where d indicates a d-turn delay. The FIR filter with decimation is

y
(M)
deci [n] = y(M,m)[n] (66)

m = n (mod M)

where

y(M,m)[n] =

N
∑

k=1

ak

1

M

M−1
∑

m′=0

xn−[(k−1)M+d+m′+m] (67)

for m = 0, 1, 2, . . . ,M − 1.

For comparison, we will make an FIR filter by averaging y(M,m)[n] over m as

y(M)[n] =
1

M

M−1
∑

m=0

y(M,m)[n] =
1

M2

N
∑

k=1

ak

M−1
∑

m=0

M−1
∑

m′=0

xn−[(k−1)M+d+m′+m]. (68)

This form of y(M)[n] shows that it is a linear interpolation of the FIR filter of y
(M)
DS [n].

By decimation, a bunch is kicked by a different FIR filter y(M,m)[n] as the turn number n

changes. However, the motion of the oscillation is much slower in the timescale of M turns,

therefore, the effect of those kicks on the bunch is averaged by m. Thus, we can expect that

the effect of those kicks is well approximated by the effect of the FIR filter y(M)[n].

The coefficients of y
(M)
DS [n] and y(M)[n] for the conditions of Eq. (64) and (G(0), O(0)) =

(0, 0) with one-turn delay (d = 1) are shown in Fig. 9.

The results of the simulation with the FIR filters y
(M)
deci [n] and y(M)[n] based on Eq. (138)

and Eq. (139) are shown in Fig. 10. We can see the good agreement between the results

of these two FIR filters and y(M)[n] are the good approximation of the FIR filters with

decimation, y
(M)
deci [n], as expected. The frequency responses of y(M)[n] at the vicinity of the

target tune ∆ν = 0.007 are shown in Fig. 11 and shows a tune acceptance as large as that

of a 12-tap IIR filter discussed in Ref. [48]. In Fig. 11, the gain or the feedback damping

rate at the target tune ∆ν = 0.007 are reduced from the gain specified by the condition for

the FIR filters in Eq. (64), as the increase of the decimation factor M. This gain reduction is

caused by the averaging effect of the decimation and the actual damping time of the beam is

longer than that we expect from the condition Eq. (64). For the simulation in Fig. 10, this

reduction of the gain is compensated and the damping time shown are the actual damping

time.

The frequency responses of the gain of y
(M)
DS [n] and y(M,m)[n] are shown in Fig. 12 and

Fig. 13, respectively, and the P values in Section IIC which represent the noise power are
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TABLE I: Values for P in Eq. (58) for the FIR filters:y
(M)
DS [n] and y(M,m)[n], with number of taps

(N) and decimation factors (M).

N M
P

y
(M)
DS [n] y(M,m)[n]

8 32 2.7 0.084

16 16 1.6 0.099

32 8 0.81 0.10

64 4 0.41 0.10

256 1 0.10

listed in Table I. The filters y(M,m)[n] do not have passband peaks seen in the the frequency

response of the gain of the downsampling FIR filters y
(M)
DS [n] and the P values of y(M,m)[n]

are M times smaller than those of y
(M)
DS [n] and the noise is reduced with decimation.

In addition, in Fig. 10, we can see the emergence of an oscillation of tune 0.002 after the

1000th turn for the damping time 142T0. This oscillation is excited by the feedback itself,

which we will discuss later in this section.

-0.06

-0.04

-0.02

0

0.02

0.04

0 50 100 150 200 250 300

Coefficients

16-tap (M=16)
8-tap (M=32)
256-tap (M=1)
16-tap (M=16)
8-tap (M=32)

C
o
ef
fi
ci
en
ts
 (
 a
k 
)

Tap (k)

y (M )[n]}

}yDS(M )[n] /M

FIG. 9: The coefficients of the FIR filters of y
(M)
DS [n] and y(M)[n]. y

(M)
DS [n] of a 256-tap with M=1

(solid line); a 16-tap with M=8 (circles); and an 8-tap with M=16 (triangles), and y(M)[n] of a 16-

tap (dashed line) and an 8-tap (dotted line) are shown. The coefficients of y
(M)
DS [n] are normalized

by M .
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FIG. 10: Simulation result of longitudinal feedback with Eqs. (138) and (139) with 8-tap FIR

filters with decimation by a factor 32: y
(M=32)
deci [n] (dotted line) and y(M=32)[n] (dashed line), with

a actual feedback damping time of 438 turns (τFB = 438T0) and 142 turns (τFB = 142T0). The

feedback is turned on at the 500th turn. The results of two filters agree well. The oscillation of

the tune 0.002 is observed after the 1000th turn for the damping time 142T0, which is excited by

the feedback itself.
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FIG. 11: Frequency responses of the gain and phase of the FIR filters y(M)[n] in the vicinity of

∆ν0 = νs. A 256-tap with M=1 (solid line), a 16-tap with M=16 (dashed line), and an 8-tap with

M=32 (dotted line) are shown.

2. Stability

We will analyze the stability of longitudinal feedback by following the discussion in Ap-

pendix IXC. From Eq. (167) in Appendix IXC, the frequency response of the FIR filter is
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line), a 16-tap with M=16 (dashed line), and an 8-tap with M=32 (dotted line).

proportional to

G̃ = αT0P̃ . (69)

As examples, we take a 256-tap FIR filter y
(M=256)
deci [n] = y

(M=256)
DS [n] and a 8-tap FIR filter

with decimation y
(M=32)
deci [n] for the tune ∆ν0 = 0.007(φ0 = 0.044). The frequency response

of the 256-tap filter in Fig. 11 shows that the phase of the filter is 180 deg. and 0 deg.

at ∆ν1 = 0.002 (φ1 = 0.013 ) and ∆ν1 = 0.012 (φ1 = 0.075), respectively, and those are

the proper phase to drive the tune from ∆ν0 to ∆ν1 as shown in Appendix IXC. For

∆ν1 = 0.002, we obtain
∣

∣

∣
G̃(∆ν0)/G̃(∆ν1)

∣

∣

∣
= 1/2.2 from Fig. 11 and, from Eq. (171), the
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maximum stable damping rate per turn is

|φI | =

∣

∣

∣

∣

φ2
1 − φ2

0

2φ0

∣

∣

∣

∣

∣

∣

∣

∣

∣

G̃(∆ν0)

G̃(∆ν1)

∣

∣

∣

∣

∣

= 0.020 × 1/2.2 = 1/111. (70)

For ∆ν0 = 0.012, we obtain
∣

∣

∣
G̃(∆ν0)/G̃(∆ν1)

∣

∣

∣
= 1/2.3 and |φI | = 1/54 which is smaller

than the value for ∆ν1 = 0.002 and the shortest stable damping time with this FIR filter is

111T0 for ∆ν1 = 0.002.

The simulation with Eqs. (138) and (139) shows that the oscillation is unstable for the

damping time shorter than ∼ 114T0 at ∆ν1 = 0.002 which is in agreement with the expected

value above. The results for several feedback damping rates are shown in Fig. 14; the growth

of the oscillation of ∆ν1 = 0.002 can be seen after the 1000th turn for shorter damping times.

For the FIR filter with decimation y
(M=32)
deci [n], we do not have definite frequency response

and we use the frequency response of y(M=32) in Fig. 11 instead. The phase of the filter is

180 deg. and 0 deg. at ∆ν1 = 0.002 and ∆ν1 = 0.012, respectively, and those are proper

phase to drive such tune shift. For ∆ν1 = 0.002, we obtain
∣

∣

∣
G̃(∆ν0)/G̃(∆ν1)

∣

∣

∣
= 1/2.9 and

the maximum stable damping rate per turn is |φI | = 1/148. For ∆ν1 = 0.012, we have
∣

∣

∣
G̃(∆ν0)/G̃(∆ν1)

∣

∣

∣
= 1/1.4 and |φI | = 1/35 which is smaller than the value for ∆ν1 = 0.002,

and the maximum stable damping rate per turn is 1/148 or the shortest stable damping

time is 148T0 at ∆ν1 = 0.002. The simulation result with y
(M=32)
deci [n] shows that the beam

is unstable at ∆ν1 = 0.002 for the damping time shorter than 148T0 as in the simulation

result in Fig. 10 for the damping time 142T0.

C. Longitudinal Feedback by a Transverse Kick at Dispersion

In the schemes shown in Appendix IXB, if we choose a transverse kick at a dispersive

section for the output of the feedback, we can control the revolution period, and the longi-

tudinal feedback is possible using not an energy kicker (longitudinal kicker) but a transverse

kicker. For the input to the feedback, we can use the timing of a bunch or the energy

shift measured as a transverse position at a dispersive section. In the latter case, we can

perform the feedback with the same setup as for the transverse feedback. However, we need

to prepare an FIR filter of the band elimination at the horizontal tune [49] or the filter with

proper gain and phase at the horizontal tune to control the horizontal motion.

We will show such an FIR filter in a later section.
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FIG. 14: Simulation result of longitudinal feedback with Eqs. (138) and (139) for a 256-tap FIR

filter for ∆ν0 = 0.007 at several feedback damping times (τFB = 110T0, 117T0, and 217T0): The

oscillation of the tune 0.002 is observed after the 1000th turn for the feedback damping times of

110T0 and 117T0.

In such a scheme, the feedback system cannot distinguish oscillation due to the COD

and the synchrotron oscillation through dispersion. If the COD oscillation exists, it excites

the feedback and drives the longitudinal motion. If this is a serious problem, we have to

use more BPMs to cancel the betatron motion signal by choosing the proper betatron phase

relationship between them.

Also the advantage of the scheme of the control of longitudinal motion by transverse kick

is that we can control the longitudinal motion of coasting beams because the frequency of

the kick is much lower than the longitudinal kickers with RF cavities or striplines that are

intrinsically high frequency devices for bunched beams.

IV. TWO-DIMENSIONAL TRANSVERSE FEEDBACK BY A SINGLE-LOOP

We propose single-loop two-dimensional transverse feedback with FIR filters. The ad-

vantages of this scheme is that one signal line, one processor, and one kicker are enough

for two-dimensional feedback, which make the system easy to setup and tuning, and low in

cost.

In longitudinal direction, the control of two oscillation of different tunes-a dipole and a

quadrupole modes- are already achieved at DAFNE[18, 50] with a single loop by adjusting
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FIG. 15: Single-loop two-dimensional feedback. For the configuration between the pair of BPM

electrodes and the kicker electrode, we have two choices: the case A (solid line) and the case B

(dotted line). The same setup can be used for single-loop three-dimensional feedback which is

described later in this study.

the response of an FIR filter at those tunes.

Using the BPM electrodes at skewed positions as shown in Fig. 15, we can detect the

horizontal and vertical betatron oscillations with a single signal as

Sin = CHxH + CV xV (71)

where xH and xV are the horizontal and vertical beam positions, respectively; CH and CV

are the sensitivity of the BPM to horizontal and vertical positions, respectively. We use Sin

as the input to the feedback. For the kicker, we use electrodes at skewed positions as shown

in Fig. 15 and we can add a kick to the beam horizontally and vertically, by a single signal

Sout from the feedback processor to the kicker as

R = (DH x̂H +DV x̂V )Sout (72)

where R is the kick vector; x̂H and x̂V are the unit vectors for horizontal and vertical

directions, respectively; and DH and DV are the kicker efficiencies to horizontal and vertical

directions, respectively.

Thus, if we have an FIR filter that has proper gain and phase at the horizontal and

vertical tunes, we can control those two-dimensional oscillations by a single signal, or single

feedback loop. We will show such FIR filters calculated with the TDLSF method.
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TABLE II: Transverse parameters of the Photon Factory ring at the BPM and the kicker. (H) and

(V) indicate horizontal and vertical values, respectively.

Fractional betatron tunes 0.60 (H) / 0.28 (V)

Betatron function / m 5.8 (H) / 5.8 (V)

Ratio of sensitivity of BPM (CH/CV ) 3

Configuration A B

Ratio of kick strength (DH/DV ) 1 -1

Single-loop two-dimensional transverse feedback systems with the scheme proposed here

are in operation at Photon Factory [30, 31], Taiwan Light Source [34], and SOLEIL [37].

As an example, we consider the Photon Factory ring of which the transverse parameters are

listed in Table II. As shown in Fig. 15, we have two choices in the configurations between

the pair of BPM electrodes and the kicker electrode: A) The kicker electrode placed at #1,

and B) The kicker electrode placed at #2. In case B, we must invert the direction of the

horizontal kick compared to case A.

To obtain the same damping rate in the horizontal and vertical directions, we compensate

the ratio of the position sensitivity of the BPM in horizontal and vertical by increasing the

gain of the FIR filter at the vertical tune by a factor of CH/CV = 3 in Table II. The BPM

and the kicker are placed at the same location. The required condition for the FIR filter is

{(

∆ν(1), G(1), ζ (1), O(1)
)

,
(

∆ν(2), G(2), ζ (2), O(2)
)}

=










{(

0.60, 1,−π
2
, O(1)

)

,
(

0.28, 3,−π
2
, O(2)

)}

for case A

{(

0.60, 1, π
2
, O(1)

)

,
(

0.28, 3,−π
2
, O(2)

)}

for case B
(73)

where O(1), O(2) and the number of taps are tuning parameters to obtain wider tune accep-

tance and less noise, and the phase is flipped for the horizontal direction in case B. If we

set O(1) = O(2) = 1, and O(0) = 0 for DC, the required minimum number of taps of the FIR

filter is 9. We assume that the feedback system kicks a beam with a one-turn delay: the

coefficient of the 0th turn is zero (a0 = 0).

The coefficients of a 9-tap FIR filter with the position data of nine previous turns (k =

1, 2, 3, . . . , 9) for cases A and B are shown in Fig. 16 and their frequency responses are shown

in Fig. 17. The filters have enough acceptance to the tune shift. However, in these figures,
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FIG. 16: Coefficients of the 9-tap FIR filters for the single-loop two-dimensional transverse feedback

for cases A and B.
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FIG. 17: Frequency responses of the gain and phase of the 9-tap FIR filters shown in Fig. 16, for

single-loop two-dimensional transverse feedback for case A (solid line) and B (dotted line). The

gain is normalized by the gain at the horizontal tune (∆ν = 0.60).

we can see that the gain at tunes other than the target tunes of 0.60 and 0.28 is nearly two

orders of magnitude higher than the gain at the target tunes. This raises the possibility of

the saturation of the system by noise or the beam position signal produced by a synchrotron

motion if the BPM is at a dispersive section. Moreover, if the BPM and the kicker both

are placed at dispersive sections, the feedback may drive a longitudinal oscillation as we

shall discuss in Appendix IXB. If we take the every other turn data (k = 1, 3, 5, . . . , 17)

to make a 9-tap FIR filter, the gain at tunes other than the target tunes is lower however

the acceptance to the horizontal tune shift is too narrow for actual application as shown in

Fig. 18.

To suppress such high gain at tunes other than the target tunes, we can make more tap

filters with the TDLSF method. As examples, we show a 12-tap and a 17-tap FIR filters of
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FIG. 18: Frequency responses of the gain and phase of the 9-tap FIR filters with every 2nd turn

position data (k = 1, 3, 5, 7, . . . , 17) for case A (solid line) and B (dotted line). The gain at tunes

other than target tunes are smaller than the 9-tap FIR filter with every single turn position data

in Fig. 17. However the acceptance for the horizontal tune is much narrower.

which the coefficients and the frequency responses are in Fig. 19 and Fig. 20, respectively.

The frequency responses of those FIR filters have narrower acceptance to the tune shift

than that of 9-tap FIR filters in Fig. 17 and those acceptances are still not sufficient for the

practical application to the Photon Factory ring. Thus, we used a 20-tap FIR filter for case

B with the following ”tuned” condition:

{(

∆ν(m), G(m), ζ (m), O(m)
)

: m = 1, 2, 3, 4
}

=
{(

0.58, 1,
π

2
, 0

)

,
(

0.61, 1,
π

2
, 1

)(

0.26, 3,−
π

2
, 0

)

,
(

0.28, 3,−
π

2
, 1

)

.
}

(74)

Because the BPM are placed at a dispersive section at the ring, the contamination of low

frequency position signal produced by synchrotron motion is large and we set (G(0), O(0)) =

(0, 2) for DC to remove this low frequency signal. The minimum required number of taps

Nc ( Eq. (41) ) for this condition is 15 and we choose 20-tap by its moderate gain at tunes

other than the target tunes and moderate tune acceptance. The coefficients of the filter

are shown in Fig. 21 and its frequency response is shown in Fig. 22. The gain at tunes

other than target tunes are rather higher than the FIR filters shown in Fig. 20, however,

the acceptance to the tune shift is much larger.

In most transverse kickers for storage rings, four skewed position stripline electrodes are

employed and, if we use all of them, a feedback processor has to perform two FIR filters for

cases A and B simultaneously as done by the SPring-8 feedback processor[30].
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FIG. 19: Coefficients of the 12-tap and 20-tap FIR filters for the single-loop two-dimensional

feedback.
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FIG. 20: Frequency responses of the gain and phase of the 12-tap and 17-tap FIR filters for two-

dimensional feedback for cases B. The gain is normalized by the gain at horizontal tune (∆ν = 0.60).

The stability of the feedback with the 9-tap and 20-tap FIR filters is summarized in

Table III.

In addition, if we use an FIR filter which has zero gain at one of the transverse directions,

such feedback can operate as an one-dimensional transverse feedback.

We have to note the limitations of this single-loop two-dimensional scheme. It is difficult

to produce adequate FIR filters if the difference of horizontal and vertical tunes is small

and the difference of the horizontal and vertical betatron phase advances between the BPM

and the kicker is large [51] because the phase of such FIR filter changes so rapidly in the

frequency response therefore the tune acceptance is small. And also it is difficult to apply

this scheme if the difference of horizontal and vertical tunes is so small that the horizontal

and vertical oscillation are coupled to produce a diagonal oscillation mode which the skewed

position BPM and kicker can not detect and kick.
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FIG. 21: Coefficients of the 20-tap FIR filters for the single-loop two-dimensional feedback.
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FIG. 22: Frequency responses of the gain and phase of the 20-tap FIR filters for two-dimensional

feedback for cases A and B. The gain is normalized by the gain at horizontal tune (∆ν = 0.60).

TABLE III: Stability of 9-tap and 20-tap FIR filters for two-dimensional transverse feedback. In

the row for the directions, H and V indicate the horizontal and vertical directions, respectively.

9-tap 20-tap

configuration A B A B

direction H V H V H V H V

∆ν0 = φ0/(2π) 0.60 0.28 0.60 0.28 0.60 0.28 0.60 0.28

∆ν1 = φ1/(2π) 0.95 0.17 0.84 0.16 0.55 0.21 0.50 0.21

ζ(φ1)/deg. 180 0 0 0 0 0 180 0
∣

∣

∣
G̃(∆ν0)/G̃(∆ν1)

∣

∣

∣
1/42 1/13 1/47 1/16 1/3.4 1/4.0 1/6.3 1/3.7

|T0/τFB| 14 18 21 21 14 8.9 19 8

simulation 14 18 21 21 14 9 19 8
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V. THREE-DIMENSIONAL FEEDBACK BY A SINGLE-LOOP

We will show that the scheme described above can be extended to single-loop three-

dimensional feedback that uses a transverse position and a transverse kick at dispersive

sections.

Single-loop horizontal-longitudinal feedback systems already proposed by Chao et al. [47].

However, they did not show the possibility of the scheme of longitudinal feedback with a

transverse feedback system of which input and output are a transverse position and kick at

dispersive sections, respectively. Contrary to their result, we show that the such feedback

systems can be realized with a digital signal processing scheme and show the possibility of

extension to single-loop three-dimensional feedback.

We assume that a BPM is composed of a pair of skewed electrodes (Fig. 15) and is placed

at a dispersive section. Then, the beam position signal from the BPM is

S = CH(xH + ηδ) + CV xV (75)

where xH and xV are the horizontal and vertical position by the betatron oscillations, re-

spectively; and δ and η are the energy shift and the dispersion function, respectively. We

assume that only the horizontal dispersion function is non-zero. A transverse kicker with

skewed position stripline electrodes at a dispersive section can kick the beam horizontally,

vertically, and longitudinally by changing the circumference of the ring.

If we have an FIR filter that can simultaneously control the gain and phase at three

tunes (two betatron tunes and the synchrotron tune), the feedback can control the beam

three-dimensionally with a single signal. We will show such an FIR filter calculated with

the TDLSF method.

A. Required Condition for FIR Filters

We assume that a BPM and a kicker are placed at the same location; hence, the difference

in betatron phases between the monitor and the kicker is 0, and we set the horizontal and

transverse beta functions at the location to βH and βV , respectively. We treat the case A in

Fig. 15 for the configuration of the BPM and the kicker.

To obtain damping of the horizontal and vertical betatron oscillations with the fractional

tunes of ∆νH and ∆νV , respectively, we use Eqs. (129) , (131), and (133) in Appendix IXA
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with setting F = 0 and K̃(∆νT ) = KT e
−i π

2 where KT =
∣

∣

∣
K̃(∆νT )

∣

∣

∣
and the subscript T

shows that the parameter attached is for horizontal (T = H) or vertical (T = V ) directions.

The damping rate per turn of the betatron oscillation for the direction T = H, V is

T0

τT
=

1

2
βTKT . (76)

For the damping of the synchrotron oscillation with tune ∆ν = νs, we use Eqs. (152) ,

(154), and (156) in Appendix IXB with setting P = F = W = 0 and K̃(νs) = KLe
i π
2 where

KL =
∣

∣

∣
K̃(νs)

∣

∣

∣
, and the damping rate per turn of the synchrotron oscillation is

T0

τL
=

1

2

η2ωs

vα
KL. (77)

where η, ωs, v and α are the dispersion function, the angular frequency of the synchrotron

oscillation, the velocity of the beam, and the slip factor of the ring, respectively.

From Eq. (76) and (77), the requirements for the response of the FIR filter at the target

tunes are

K̃(∆νH) = 2
T0

τH

1

βH

e−i π
2 = e−i π

2KH (78)

K̃(∆νV ) = 2
T0

τV

1

βV

e−i π
2 =

τH
τV

βH

βV

e−i π
2KH (79)

K̃(νs) = 2
T0

τL

vα

η2ωs

ei π
2 =

τH
τL

vα

η2ωs

βHe
i π
2KH . (80)

B. Ratio of Dynamic Range

We will compare the dynamic ranges of the system for the horizontal and longitudinal

directions. From Eqs. (116) and (136), we obtain the relation of the complex amplitudes

of the transverse kick angle θ̃, the horizontal betatron position oscillation x̃H , and the

synchrotron energy oscillation δ̃ as

∣

∣

∣
θ̃
∣

∣

∣
= |KH | |x̃H | = |KLη|

∣

∣

∣
δ̃
∣

∣

∣
. (81)

Thus, we have the ratio of the dynamic ranges as
∣

∣

∣

∣

∣

δ̃

x̃H

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

KH

KL

1

η

∣

∣

∣

∣

=

∣

∣

∣

∣

τL
τT

η

βT

ωs

vα

∣

∣

∣

∣

(82)

where we used Eqs. (76) and (77) and |δ̃| ≃ |(ωs/α)τ̃ | that is obtained from Eqs. (138) and

(139) and τ̃ is the amplitude of the synchrotron timing oscillation of the bunch.
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TABLE IV: Longitudinal parameters of the Photon Factory ring.

Parameters Symbol Value

Momentum compaction factor α 5 × 10−3

Dispersion η 0.5 m

Revolution Period T0 624 ns

Synchrotron Tune νs 0.014

Velocity of the beam v c = 3.0 ×108 m/s

C. Example: Photon Factory Ring

We will discuss single-loop three-dimensional feedback with the parameters of the Photon

Factory ring shown in Table II and Table IV. In this discussion, contrary to Table II, we

set the ratio of the sensitivity of BPM to one (CH/CV = 1).

In most cases, the required longitudinal feedback damping time is rather longer than the

transverse feedback damping time. Therefore, we assume that

τH = τV = 0.2τL. (83)

We also assume that we use the kicker stripline at position #4 in Fig. 15; then we have

to flip the polarity of the FIR filter at the vertical tune.

Then, from Eqs. (78) ,(79), and (80), the condition for the FIR filter is

{(

∆ν(m), G(m), ζ (m), O(m)
)

: m = 1, 2, 3
}

=
{(

0.014, 50,
π

2
, OL

)

,
(

0.60, 1,−
π

2
, OH

)

,
(

0.28, 1,
π

2
, OV

)}

(84)

where OL,H,V are the adequate orders of expansion.

The dynamic range ratios in Eq. (82) with the condition of Eq. (83) are

∣

∣

∣

∣

∣

δ̃

x̃H

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

δ̃

x̃V

∣

∣

∣

∣

∣

= 4 × 10−5/mm (85)

or
∣

∣

∣

∣

τ̃

x̃H

∣

∣

∣

∣

=

∣

∣

∣

∣

τ̃

x̃V

∣

∣

∣

∣

= 1.4 ps/mm. (86)

These ratios are typical values of longitudinal and transverse feedback systems, and the

required power for the kicker is the same as that for typical transverse feedback systems.
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FIG. 23: Coefficients of the FIR filter for single-loop three-dimensional feedback with the tuned

condition shown in Table V.

We will show a 128-tap FIR filter with a one-turn delay as an example. For the calculation

of its coefficients with the TDLSF method, we use the tuned condition listed in Table V

instead of the naive condition of Eq. (84) to obtain wider tune acceptance.

TABLE V: Tuned condition for the TDLSF method to obtain the 128-tap FIR filter for single-loop

three-dimensional feedback

∆ν(m) G(m) ζ(m) O(m) ∆ν(m) G(m) ζ(m) O(m)

0.014 50 π
2 2 0.56 1 -π

2 1

0.24 1 π
2 1 0.57 1 -π

2 0

0.25 1 π
2 0 0.58 1 -π

2 1

0.26 1 π
2 1 0.59 1 -π

2 0

0.27 1 π
2 0 0.60 1 -π

2 2

0.28 1 π
2 2 0.61 1 -π

2 0

0.29 1 π
2 0 0.62 1 -π

2 1

0.30 1 π
2 1 0.63 1 -π

2 0

0.31 1 π
2 0 0.64 1 -π

2 1

0.32 1 π
2 1

The coefficients of the 128-tap FIR filter are shown in Fig. 23, and its frequency response

is shown in Fig. 24 and Fig. 25.

Following the analysis on the stability of the feedback in Appendix IXC, we obtained
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FIG. 24: Frequency response of the gain of the 128-tap FIR filter for three-dimensional feedback

shown in Fig. 23. The betatron and synchrotron tunes are indicated by the arrows. The gain is

normalized by the gain at horizontal and vertical target tunes (∆ν = 0.60, 0.28).
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FIG. 25: Frequency response of the phase of the 128-tap FIR filter for three-dimensional feedback

shown in Fig. 23. The betatron and synchrotron tunes are indicated by arrows.

the maximum stable feedback damping rates for three directions and those are shown in

Table VI. The gain of the 128-tap FIR filter in the vicinity of the synchrotron tune is

much larger than the gain at the betatron tunes and this high gain drives vertical betatron

oscillations unstable in the vicinity of the synchrotron tune as seen in the simulation result

in Fig. 26.

In addition, if we can set the gain at the horizontal and/or vertical tune to zero, we can use

this as one-dimensional longitudinal feedback as previously discussed in Section IIIC, or as

two-dimensional horizontal-longitudinal or two-dimensional vertical-longitudinal feedback.
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TABLE VI: Transverse and longitudinal stability of 128-tap FIR filters for three-dimensional feed-

back. The polarity of the feedback is inverted for vertical and the required phase at ∆ν1 for the

tune shift from ∆ν0 is also inverted.

Direction Horizontal Vertical Longitudinal

∆ν0 0.60 0.28 0.014

∆ν1 0.50 0.0042 0.0042

ζ1/deg. 0 180 180
∣

∣

∣
G̃(∆ν0)/G̃(∆ν1)

∣

∣

∣
1/18 1/114 1/2.3

|T0/τFB| 1/54 1/94 1/57

simulation 1/54 1/94 1/57
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FIG. 26: The simulation result with Eq. (119) for the vertical betatron oscillation of ∆ν0 = 0.28

with two horizontal damping times:100T0 (solid line) and 80T0 (dotted line). The 128-tap FIR

filter shown in Fig. 23 is used for the simulation. With the damping time time 80T0,a the beam is

unstable at ∆ν = 0.004 where the phase shift is 180 deg., as seen in Fig. 25.

D. Comparison of Transverse Kicker and Energy Kicker

In this scheme, we use a transverse kicker to control the longitudinal motion. On the

other hand, energy kickers are widely used for longitudinal feedback. We will calculate the

required drive power for both cases.

From Eqs. (136) and (137), we obtain the required kick amplitudes for transverse kicker
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θ̃ and for energy kickers Ũ as

θ̃ = K̃ηδ̃ (87)

Ũ

E0

= P̃ τ̃ . (88)

If we set the phase of K̃ and P̃ for maximum damping as K̃ = iKI and P̃ = iPI , then,

from Eq. (152), we obtain

K̃ = i
2v

η2

α

ωs

φI (89)

for the transverse kicker and

P̃ = i
2ωs

α
φI (90)

for the energy kicker. Inserting these intoEqs. (87) and (88) yields the required amplitude

of the transverse and energy kick for damping rate φI and dynamic range τ̃ or δ̃ as

θ̃ = i
2v

η

α

ωs

φI δ̃ ≃
2v

η
φI τ̃ (91)

Ũ

E0
= i

2ωs

α
φI τ̃ ≃ −2φI δ̃ (92)

where we use ωs

α
τ̃ ≃ iδ̃ obtained from Eqs. (138) and (139).

Table VII lists the power required for several types of feedback kickers: a horizontal-

vertical kicker with four skewed positioned striplines; a horizontal dedicated kicker with two

striplines; and an energy kicker. The parameters of the kickers are listed in Table II and

Table IV remembering that we set the ratio of the sensitivity of the BPM to horizontal and

vertical directions to one (CH/CV = 1). The transverse kicker length is assumed to be 0.3m

long. The shunt impedance of the energy kicker is typical value for rings with RF frequency

∼ 500MHz [31, 33, 52, 53]. The shunt impedances of the transverse kicker are scaled from

those of the skewed positioned stripline kicker installed in the SPring-8 ring and from the

dedicated horizontal kicker designed for the SPring-8 ring. Kickers dedicated to horizontal

direction usually have more impedance [54], however, the vertical betatron motion should

be controlled by another loop if necessary.

The result shows that feedback with the transverse kickers requires more power than with

the energy kicker; however, such power levels are commonly used in transverse feedback

systems.
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TABLE VII: Comparison of the required power of transverse kickers and an energy kicker (lon-

gitudinal kicker) for the timing dynamic range of |τ̃ | = 1 ps and the longitudinal damping time

τFB = 1ms (φI = 6.24 × 10−4) with the parameters of the Photon Factory ring listed in Table II

and Table IV. The shunt impedance is defined as Rsh = V 2

2P
where V and P are kick voltage and

power, respectively.

kick direction horizontal and vertical horizontal energy

kick |θ̃| = 7.5 × 10−7 rad |Ũ |/E0 = 3.5 × 10−8

Voltage 1900 V 88 V

kicker type four skewed striplines two striplines cavity

Shunt impedance 5.3 kΩ 25 kΩ 500 Ω

Power/stripline 75 W / stripline 35 W / stripline 7.7 W

VI. SUMMARY

We proposed single-loop two-dimensional feedback systems with the FIR filters that can

control the phase and gain at multiple frequencies/tunes and such systems are successfully

operating at several rings. We also proposed a scheme of longitudinal feedback by a trans-

verse feedback at a dispersive section, and with this scheme, we discussed the possibility of

the single-loop three-dimensional feedback that controls two-dimensional betatron oscilla-

tion and synchrotron oscillation, simultaneously. In this scheme, the setup is the same as in

the transverse feedback system, and no energy kickers are necessary.

We demonstrate a time domain least square fitting method to obtain the coefficients of

finite impulse response filters for feedback. With this method we can make longer tap filters

without additional constraints and with such filters we can reduce the gain at tunes other

than target tunes to reduce noise to kickers to avoid the saturations of power amplifiers.

Also we analyzed the stability of the feedback with FIR filters is analyzed and the scheme

to obtain the shortest stable damping time of the feedback
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TABLE VIII: Phase advance from a BPM to a kicker and the required parameters in Eqs. (20)

and (40) for the calculation of an FIR filter. ξ+ and ξ− are the phase advances from the BPM to

the kicker counted with the directions shown in Fig. 27. ζ0 is the required phase shift between the

beam position and kick at the kicker. The delay is n-turns.

configuration
phase advance from required phase parameters

BPM to kicker ϕ ζ

M-S-K-S (1 + ∆)(nφ + ϕ) ϕ ζ0

M-S-K-O (n + 1)(1 + ∆)φ − ξ− 0 −ξ− + ζ0

M-O-K-S n(1 + ∆)φ + ξ+ 0 ξ+ + ζ0
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VII. LOCATION OF SOURCES OF TUNE SHIFT

Storage rings usually have several sources of tune shift, such as quadrupole magnets or

wigglers for betatron oscillations. If the tune shift is produced by a change in the strength

of regular quadrupole magnets, the sources are distributed uniformly around a ring. On the

other hand, if a source is a strong wiggler without global compensation of its tune shift, the

source is localized in a ring. We have to choose proper phase parameters ϕ(m) and ζ (m) in

Eqs. (20) and (40) for better compensation of the tune shift with these sources.

We will show the case of three configurations of the sources shown in Fig. 27; [M-S-K-S]

: Sources are uniformly distributed around the ring, [M-S-K-O] : Sources are localized from

the BPM to the kicker, and [M-O-K-S] : Sources are localized from the kicker to the BPM.

The proper choice of parameters for them are listed in Table VIII.

39



!

M

K

(1+!) (" + !) (1+ !) " + #+2(1+ !) " " #"

#"

M

K

S

M

K

S #+

M-S -K-S M-S-K-O M-O-K-S

SS

FIG. 27: Configurations of the sources of tune shift. Each circle shows a storage ring with a beam

circulating clockwise. The elements flagged with M, K and S are BPMs, kickers and sets of sources

of the tune shift, respectively. We show three configurations- [M-S-K-S]: sources are distributed

uniformly around the ring, [M-S-K-O]: sources are localized from the BPM to the kicker, and [M-

O-K-S]: sources are localized from the kicker to the BPM. The phase advances from the BPM to

the kicker for the case with one-turn delay are shown below the pictures for the configurations.

Dashed lines show the paths to count the phase advance from the BPM to the kicker and ξ+ and

ξ− are the phase advances from the BPM to the kicker counted with the directions shown in the

figure.

VIII. COMPARISON OF THE TDLSF METHOD WITH FREQUENCY DOMAIN

APPROACH

We will illustrate a frequency domain approach for the calculation of the coefficients of

FIR filters and show that the FIR filters by the TDLSF method with a special number of

taps are the same as FIR filters obtained by this frequency domain approach.

We assume that the beam position has the form of Eq. (17) with ϕ(m) = 0 and we define

a vector φ(m) as

φ(m) =
(

φ
(m)
0 , φ

(m)
−1 , φ

(m)
−2 , · · · , φ

(m)
−N

)

. (93)

The response of the FIR filter for the phase advance φ(m) is

G̃(φ(m)) =
N

∑

k=0

ake
iφ

(m)
−k (94)

where ak are the coefficients of the FIR filter and m = 0, 1, 2, · · · ,M .

The constraints on H(φ(m)) to fulfill the gain and the phase at the target phase advance
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φ(m) is

G̃(φ(m)) = G(m)eiζ(m)

(95)

where G(m) and ζ (m) are the required gain and phase for the feedback. We assume that

the shift of φ(m) can be represented as ∆(m)φ(m) and the constraint that H(φ(m)) remain

unchanged against this small shift is

G̃
(

(1 + ∆(m))φ(m)
)

≃ G(m)eiζ(m)

for ∆(m)φ
(m)
k << 1. (96)

Then, using Eq. (94), we obtain

N
∑

k=0

ake
iφ

(m)
−k = G(m)eiζ(m)

(97)

N
∑

k=0

ake
iφ

(m)
−k

(1+∆(m)) = G(m)eiζ(m)

. (98)

The exponential function in the second equation can be expanded as

eiφ
(m)
−k

(1+∆(m)) ≃ eiφ
(m)
−k (1 + i∆(m)φ

(m)
−k ), (99)

and we obtain

N
∑

k=0

ake
iφ

(m)
−k = G(m)eiζ(m)

(100)

N
∑

k=0

akφ
(m)
−k e

iφ
(m)
−k = 0, (101)

or equivalently,

N
∑

k=0

akC
(m)
−k = G(m) cos ζ (m) (102)

N
∑

k=0

akS
(m)
−k = G(m) sin ζ (m) (103)

N
∑

k=0

akφ
(m)
−k C

(m)
−k = 0 (104)

N
∑

k=0

akφ
(m)
−k S

(m)
−k = 0. (105)
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These are the equations for the coefficients of the FIR filter with a frequency domain ap-

proach. The number of constraints for ak in Eqs. (102) to (105) are 4M + 2, thus, the

required number of taps of the FIR filter is 4M + 2.

We will show that the coefficients ak of a 4M + 2 tap FIR filter obtained by the TDLSF

method ( Eq. (40) ) also satisfy Eqs. (102) to (105), therefore the coefficients with the

TDLSF method are the same as those with the frequency domain method. We set ϕ(m) = 0

as in the case of the frequency domain analysis shown above. For 4M + 2 taps, the matrix

C in Eq. (28) is square and

D = (CCT )−1C = (CT )−1. (106)

Then, we obtain

(DCT )i,j =

N
∑

k=0

Di,kCj,k = δij. (107)

As in the case in Eqs. (35) to (38), we assume that P
(m)
0 , Q

(m)
0 , P

(m)
1 and Q

(m)
1 are the

jm-th, (jm + 1)-th, (jm + 2)-th and (jm + 3)-th components of the vector v. Then, from the

definition of C in Eq. (28), we obtain

Cjm,k = C
(m)
−k (108)

Cjm+1,k = S
(m)
−k (109)

Cjm+2,k = φ
(m)
−k S

(m)
−k (110)

Cjm+3,k = φ
(m)
−k C

(m)
−k . (111)

On the other hand, from ak in Eqs. (40) with ϕ(m) = 0 and (107), we obtain

N
∑

k=0

akCjm,k = G(m) cos ζ (m) (112)

N
∑

k=0

akCjm+1,k = G(m) sin ζ (m) (113)

N
∑

k=0

akCjm+2,k = 0 (114)

N
∑

k=0

akCjm+3,k = 0. (115)

We apply Eqs. (108) to (111) to the L.H.S. of the above equations and we obtain the

same equations as Eqs. (102) to (105). Thus, the coefficients of the 4M + 2-tap FIR filter
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obtained with the TDLSF method fulfill the condition on the FIR filter obtained with the

frequency domain approach and the coefficients of them are the same.

This frequency domain approach can produce only a 4M + 2 tap filter for the constraint

on M frequency and DC. On the other hand, the TDLSF method can produce longer tap

filters of more than 4M + 2 without additional constraints. Such longer tap filters have less

gain at tunes other than target tunes and can reduces noise to avoid saturation of feedback

systems.

IX. FEEDBACK SCHEME AND STABILITY

We will discuss the feedback scheme and their stability.

To simplify the discussion, we discuss the case that the phase advance of oscillation

between sampling of the position data by a system is constant as φk = kφ where φ = 2π∆ν

and ∆ν is the fractional tune of the oscillation. This is typically the case for the storage

ring feedback.

A. Transverse Feedback

We begin by discussing transverse feedback systems.

To control the transverse oscillation, we have several choice of the input and the output

of the feedback [47]. Here, we choose the transverse position for the input and the transverse

kick or the longitudinal energy kick for the output as

θn = K

N
∑

k=0

akxn−k (116)

Un

E0

= F
N

∑

k=0

bkxn−k (117)

where θn and Un are the transverse angle kick and the energy kick at n-th turn, respec-

tively, and are calculated by FIR filters from transverse position data xk, ak and bk are the

coefficients of the FIR filters, and E0 is the reference energy of the ring.

To simplify the discussion, we assume that the BPM and the kicker are placed at the same

location. For the ring with the fractional tune of ∆ν0, a one-turn matrix at the location of
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the BPM and the kicker is

M0 =





cosφ0 + α sinφ0 β sinφ0

−γ sinφ0 cos φ0 − α sinφ0



 (118)

where φ0 = 2π∆ν0, and β,α = −β ′/2 and γ = (1 + α2)/β are the Twiss parameters.

The equation of motion of the beam just downstream of the BPM and the kickers is now




xn+1

x′n+1



 = M0









xn

x′n



 +





−ηUn

E0

θn − η′ Un

E0







 = M0









xn

x′n



 +





−ηF
∑N

k=0 bkxn−k

∑N
k=0 (Kak − η′Fbk)xn−k









(119)

where x′n is the angle of the beam at the n-th turn and η and η′ are the dispersion function

and its angle, respectively.

We assume that xn and x′n can be represented as




xn

x′n



 =





x̃

x̃′



λn. (120)

Inserting this into Eq. (119), we obtain an eigenvalue equation for λ as

λ2 −
(

2 cosφ0 − (cosφ0 + α sinφ0)ηF̃ + β sinφ0K̃
)

λ+ 1 − ηF̃ = 0 (121)

where we define

K̃ =

N
∑

k=0

(Kak − η′Fbk)λ
−k (122)

F̃ = F

N
∑

k=0

bkλ
−k. (123)

First, we will solve Eq. (121) considering that K̃ and F̃ are not the functions of λ but

the constants.

We assume that solutions of Eq. (121) have the form of

λ± = eκ̃e±i(φR+iφI) (124)

where φR and φI are real values and κ̃ is a complex value. Then, we obtain

λ+λ− ≃ 1 + 2κ̃ (125)

λ+ + λ− ≃ 2 (1 + κ̃) cos φR − 2iφI sinφR (126)
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where we assume that |κ̃| << 1 and |φI | << 1.

Comparing the above equations Eqs. (125) and (126) with Eq. (121) and assuming that

|ηF̃ | << 1, we obtain

κ̃ = −
1

2
ηF̃ (127)

cos φR = cosφ0 +
1

2
(βKR − αηFR) sinφ0 (128)

φI sin φR = −
1

2
(βKI − αηFI) sin φ0 (129)

where values with the subscript R or I are the real and imaginary parts, respectively, of

a complex value : AR = ℜ[Ã] and AI = ℑ[Ã] for Ã = AR + iAI . Then, the solution of

Eq. (121) is

λ = λ+ = eκ̃ei(φR+iφI ) = eκR−φIei(κI+φR) (130)

and the solution for λ is obtained with the values of K̃ and F̃ . However, K̃ and F̃ are the

function of λ and we need to use an iteration scheme to obtain the value of λ. The total

growth time τtot and the shifted phase advance per turn driven by the feedback, φ, are

T0

τtot

=
T0

τI
+ κR − φI (131)

φ = κI + φR, (132)

where we include other growth rate of 1/τI and T0 is the revolution period of the ring. We

assume that the growth or damping of the oscillation is small and we can approximate the

functions of Eqs. (122) and (123) as

K̃ ≃

N
∑

k=0

(Kak − η′Fbk) e
−ik2π∆ν (133)

F̃ ≃ F
N

∑

k=0

bke
−ik2π∆ν . (134)

where we use ∆ν = φ

2π
. We represent the above functions as K̃(∆ν) and F̃ (∆ν), respectively.

In Appendix IXD, we will discuss the case that the growth/damping of the oscillation is

large.

If the feedback is strong so enough that the tune shift produced by the feedback in

Eq. (132) is sufficiently large to drive the tune φ to the unstable region where

1

τtot

> 0, (135)
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the beam oscillation at the shifted tune is excited by the feedback itself and the oscillation

of the tune φ grows to the saturation of the feedback system.

B. Longitudinal Feedback

Next, we discuss longitudinal feedback systems.

We use η for the dispersion function at the BPM and the kicker, and τ and δ for the

timing position of the beam and the relative energy shift, respectively.

We choose the transverse position x = ηδ and the longitudinal timing position τ for the

input to the feedback, and the transverse angle kick θ and longitudinal energy kick U for

the output of the feedback as

θn = W
N

∑

k=0

ckτn−k +K
N

∑

k=0

ak(ηδn−k) (136)

Un

E0
= P

N
∑

k=0

dkτn−k + F

N
∑

k=0

bk(ηδn−k) (137)

where ak,bk, ck and dk are coefficients of FIR filters, and τn and δn are the longitudinal

timing position and the relative energy shift at the n-th turn, respectively.

We assume that an acceleration system and the longitudinal and transverse kickers are

placed at the same location. Then, the equations for the synchrotron motion just the

downstream of them are

τn+1 = τn − αT0δn −
η

v
θn = τn − αT0δn −

η

v
W

N
∑

k=0

ckτn−k −
η2

v
K

N
∑

k=0

akδn−k (138)

δn+1 = δn +
ω2

sT0

α
τn+1 +

Un+1

E0

= δn +
ω2

sT0

α
τn+1 + P

N
∑

k=0

dkτn+1−k + ηF
N

∑

k=0

bkδn+1−k (139)

where α and ωs is the dilution factor and the angular synchrotron frequency of the ring,

respectively. In the above equations, we use the fact that a static transverse angle kick θ

at a dispersive section produces a change in the orbit length:∆C = ηθ or a change in the

revolution period:∆τ = −∆C/v = −(η/v)θ where v is the velocity of the beam [46]. In

addition, we assume that the synchrotron frequency is so lower than the betatron frequency

that the transverse kick at the synchrotron frequency is adiabatic for the betatron oscillation

and we can treat such kick as static for the betatron oscillation.
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We assume that we can write

τn = τ̃λn (140)

δn = δ̃λn. (141)

Inserting them to Eqs. (138) and (139), we obtain an eigenvalue equation for λ as

λ2 −

(

2 − ω2
sT

2
0 +

(

−
η

v
W̃ + ηF̃

)

− αT0P̃ −
η2ω2

sT0

αv
K̃

)

λ + 1 −
η

v
W̃ + ηF̃ = 0 (142)

where

K̃ = K

N
∑

k=0

akλ
−k (143)

F̃ = F
N

∑

k=0

bkλ
−k (144)

W̃ = W

N
∑

k=0

ckλ
−k (145)

P̃ = P
N

∑

k=0

dkλ
−k (146)

and we assume that |ηF̃ | << 1, 1
1−ηF̃

≃ 1 + ηF̃ , and the second-order terms of W̃ ,K̃,P̃ and

F̃ are negligibly small.

As in the discussion of transverse motion in the previous subsection, we will solve

Eq. (142) considering K̃, W̃ , P̃ , and F̃ as constants.

As in the transverse case, we assume that the solutions of Eq. (142) have the form of

λ± = eκ̃e±i(φR+iφI). (147)

Then, we obtain

λ+λ− ≃ 1 + 2κ̃ (148)

λ+ + λ− ≃ 2

(

1 + κ̃− iφIφR −
1

2
φ2

R

)

(149)

where we assume that |κ̃| << 1, |φR| << 1, |φI | << 1 and |φI | << |φR|.

Comparing above equations Eqs. (148) and (149) with Eq. (142), we obtain

κ̃ =
1

2

(

−
η

v
W̃ + ηF̃

)

(150)

φ2
R = φ2

0 + φ2
0

η2

αvT0
KR + αT0PR (151)

φI =
1

2φR

(

φ2
0

η2

αvT0

KI + αT0PI

)

(152)
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where we set φ0 = ωsT0. Thus the solution is

λ = λ+ = eκ̃ei(φR+iφI ) = eκR−φIei(κI+φR) (153)

where κ̃ = κR + iκI with real values of κR and κI .

Then, the solution for λ is obtained with the values of K̃, W̃ , P̃ , and F̃ . However Those

values are the function of λ and we need to use an iteration scheme to obtain the value of

λ. The total damping time τtot and the shifted phase advance per turn driven by feedback,

φ, are now

T0

τtot

=
T0

τI
+ κR − φI (154)

φ = κI + φR. (155)

As in the case of transverse, we assume that the growth or damping of the oscillation is

small and we can approximate the functions of Eqs. (143) to (146) as

K̃ ≃ K
N

∑

k=0

ake
−ik2π∆ν (156)

F̃ ≃ F

N
∑

k=0

ake
−ik2π∆ν (157)

W̃ ≃W
N

∑

k=0

ake
−ik2π∆ν (158)

P̃ ≃ P

N
∑

k=0

ake
−ik2π∆ν (159)

(160)

where we use ∆ν = φ

2π
. We represent the above functions as K̃(∆ν), F̃ (∆ν), W̃ (∆ν), and

P̃ (∆ν), respectively. In Appendix IXD, we will discuss the case that the growth or damping

of the oscillation is high.

As in the case of the transverse feedback, if the feedback is strong so enough that the

tune shift by the feedback in Eq. (155) is sufficiently large to drive tunes φ to the unstable

region where

1

τtot

< 0, (161)

the beam oscillation at the shifted tune is excited by the feedback itself and the oscillation

of the tune φ grows to the saturation of the feedback system.
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C. Stability of Feedback

With the discussion above, we will discuss the stability of feedback systems to show

the available shortest feedback stable damping time without the instabilities driven by the

feedback itself. To simplify the discussion, we discuss the case only with feedback and

without other sources of growth and the target tune and the actual tune are the same. We

use ∆ν0 for the target tune and ∆ν1 for the tune on the boundary of the stable region of

the feedback where the growth/damping is zero. We define φ0,1 = 2π∆ν0,1.

First, we discuss the transverse feedback. We assume F = 0 in Eqs. (127) to (129) as in

the examples shown in the main part of the study, and we set

G̃ =
1

2
βK̃ sinφ0. (162)

To simplify the discussion, we assume that a BPM and a kicker are placed at the same

location, and the phase of a FIR filter is optimized for maximum damping rate, thus the

phase of the FIR filter at the target tune ∆ν0 is -90 deg. and the phase at the boundary,

∆ν1, is 0 deg. or 180 deg.

Then, we obtain

G̃(∆ν0) = e−i π
2 |GI (∆ν0) | (163)

where GR and GI are the real and imaginary part of G̃, respectively. From Eqs. (128) and

(129) with setting φR = φ1, we obtain G̃(∆ν1) required to drive the tune from ∆ν0 to ∆ν1

as

G̃(∆ν1) = GR (∆ν1) =
cosφ1 − cosφ0

sinφ0
(164)

which defines the phase (0 deg. or 180 deg.) of G̃(∆ν1) for φ0 and φ1.

From Eq. (129), the damping rate per turn with this G̃ is

φI = −GI (∆ν0) . (165)

From Eqs. (163) to (165), we obtain the maximum stable feedback damping rate per turn

T0/τFB = φI for the transverse direction as

|φI | =

∣

∣

∣

∣

cos φ1 − cosφ0

sinφ0

∣

∣

∣

∣

∣

∣

∣

∣

∣

G̃(∆ν0)

G̃(∆ν1)

∣

∣

∣

∣

∣

. (166)
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The value of
∣

∣

∣
G̃(∆ν0)/G̃(∆ν1)

∣

∣

∣
can be obtained from the frequency response of the gain of

the FIR filter because the gain is proportional to |G̃(∆ν)| as seen in Eq. (162).

For longitudinal feedback, we set P 6= 0, K 6= 0 and W = F = 0 in Eqs. (150) to (152),

as in the examples shown in main part of the study. And we set

G̃ = φ2
0

η2

αvT0
K̃ + αT0P̃ . (167)

We assume that the phase of a FIR filter is optimized for maximum damping rate, thus the

phase of G̃ at ∆ν0 to be 90 deg. and the phase of G̃ at ∆ν1 is 0 deg. or 180 deg. Then, we

obtain

G̃(∆ν0) = ei π
2 |GI(∆ν0)|. (168)

From Eqs. (151) to (152) with setting φR = φ1, we obtain G̃(∆ν1) required to drive the

tune from ∆ν0 to ∆ν1 as

G̃(∆ν1) = GR (∆ν1) = φ2
1 − φ2

0, (169)

which defines the phase (0 deg. or 180 deg.) of G̃(∆ν1) for φ0 and φ1.

From Eq. (152), the damping rate per turn with this G̃ is

φI =
1

2φ0
GI (∆ν0) . (170)

From Eqs. (168) to (170), the maximum stable damping rate per turn for the longitudinal

direction is

|φI | =

∣

∣

∣

∣

φ2
1 − φ2

0

2φ0

∣

∣

∣

∣

∣

∣

∣

∣

∣

G̃(∆ν0)

G̃(∆ν1)

∣

∣

∣

∣

∣

(171)

and
∣

∣

∣
G̃(∆ν0)/G̃(∆ν1)

∣

∣

∣
can be obtained from the frequency response of the gain of the FIR

filter because the gain is proportional to |G̃(∆ν)| as seen in Eq. (167).

Usually FIR filters have several candidates of unstable tunes ∆ν1 which are on the bound-

aries of stable regions and satisfy the relation of the FIR filter phase and the tune shift

direction shown by Eq. (164) and Eq. (169). In those tunes for ∆ν1, the maximum stable

damping rate is limited by the tune which have lowest |φI(∆ν0)| in Eq. (166) for transverse,

and Eq. (171) for longitudinal.
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D. Response of FIR filter for Growing/Damping Oscillation

Here, we will analyze the response of the FIR filters for the input of growing/damping

oscillations. We assume that the input and output of the filter at the n-th turn, xn and yn,

respectively, are growing/damping oscillations of

xn = x̃ein(φ+iα) (172)

yn = ỹein(φ+iα). (173)

where α is a growing rate per turn, φ = 2π∆ν is the phase advance with fractional tune ∆ν,

and we take their real part as a physical quantities of them. Then, the response of the FIR

filter in Eq. (1) is

ỹ = G̃(φ+ iα)x̃ (174)

G̃(φ+ iα) =
N

∑

k=0

ake
−i(φ+iα). (175)

Expanding G̃(φ+ iα) with α, we obtain

G̃(φ+ iα) = G̃(φ) + iα
∂G̃(φ)

∂φ
−

1

2
α2∂

2G̃(φ)

∂φ2
+ . . . . (176)

For the FIR filters for the target phase advance φ0 obtained with the TDLSF method, we

obtain

∂rG̃(φ)

∂φr

∣

∣

∣

∣

∣

φ=φ0

= 0 (177)

where r is the order of the expansion with the shift of the phase advance ∆φ as indicated

by O(m) in Eq. (53). For FIR filters with r 6= 0, we have G̃(φ + iα) ∼ G̃(φ) for small α,

and the frequency response for growing/damping oscillations are the same as that for static

oscillations.

We will discuss the case of

∂G̃(φ)

∂φ

∣

∣

∣

∣

∣

φ=φ0

6= 0. (178)

We set

G̃(φ) = G(φ)eiζ(φ) (179)
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where G(φ) = |G̃(φ)| and ζ(φ) = arg(G̃(φ)) and we obtain

∂G̃(φ)

∂φ
=

(

∂G(φ)

∂φ

1

G(φ)
+ i

∂ζ(φ)

∂φ

)

G̃(φ). (180)

If α << 1, we take the first order of α in Eq. (176) and obtain

G̃(φ+ iα) = G̃(φ)

(

1 − α
∂ζ(φ)

∂φ
+ iα

∂G(φ)

∂φ

1

G(φ)

)

, (181)

and, with the approximation:

1 − α
∂ζ(φ)

∂φ
+ iα

∂G(φ)

∂φ

1

G(φ)
∼ e−α

∂ζ(φ)
∂φ eiα

∂G(φ)
∂φ

1
G(φ) , (182)

we obtain

G̃(φ+ iα) = G̃(φ)eα
∂ζ(φ)

∂φ e
iα

∂G(φ)
∂φ

1
G(φ) . (183)

Then, from Eqs. (172) to (175), we obtain

ỹe−αneinφ = G̃(φ)x̃e−α(n−
∂ζ(φ)

∂φ )e
i(nφ+α

∂G(φ)
∂φ

1
G(φ)). (184)

This form shows that the amplitude growth of yn has a delay ∂ζ

∂φ
compared with the amplitude

growth of xn, and yn has a phase shift α∂G
∂φ

1
G

compared with xn. This amplitude delay is

the group delay of the FIR filter as expected by its definition for FIR filters. In addition,

the phase shift produced by α∂G
∂φ

1
G

for growing/damping oscillation reduce the area of stable

region. We need to consider these effects if such FIR filters are used for feedback.

We will show two examples of transverse feedback with 9-tap FIR filters with 5-turn delay:

the input position data of k = −5,−6,−7,−8,−9,−10,−11,−12,−13 and the target tune

0.15 (φ0 = 0.94). First example is a FIR filter with 0th order expansion ( r = 0 and

∂ζ

∂φ
|φ=φ0 = 8.5 in Eq. (177) ) with the condition for the TDLSF method:

(∆ν,G, ζ, O) =
(

0.15, 1,−
π

2
, 0

)

(185)

and this is the simple band-pass filter. The second is the FIR filter with first order expansion

(r = 1 and ∂ζ

∂φ
|φ=φ0 = 0) with the condition:

(∆ν,G, ζ, O) =
(

0.15, 1,−
π

2
, 1

)

. (186)

For both cases, we set
(

G(0), O(0)
)

= (0, 0) for DC.
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Their frequency responses are shown in Fig. 28. For the FIR filter with ∂ζ

∂φ
= 8.5, the

variation of the phase to the tune shift is much larger, thus the tune acceptance is narrower

than those of the FIR filter with ∂ζ

∂φ
= 0. Using Eq. (119) with setting F = 0, we simulated

a feedback with a feedback damping rate 1/(15T0) for the growing oscillation with a growth

rate 1/(20T0). The results are shown in Fig. 29 where the feedback is turned on at the 500th

turn.
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FIG. 28: Frequency response of the 5-turn delay 9-tap FIR filters with ∂ζ
∂φ

= 0 (solid line) and with

∂ζ
∂φ

= 8.5 (dotted line). The target tune is 0.15 which is shown by arrows.
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FIG. 29: Simulation result for the response of the 5-turn delay 9-tap FIR filters with ∂ζ
∂φ

= 0

and ∂ζ
∂φ

= 8.5 for the oscillation with the growing rate 1/(20T0) with the feedback damping rate

1/(15T0). The feedback is turned on at 500th turn. The input (position) and the output (kick) of

the FIR filters are shown by dotted and solid lines, respectively.

For the growing part of the oscillation before the 500th turn in Fig. 29, we can observe

a delay in the growth of the amplitude, 8.4T0, for the FIR filter with ∂ζ

∂φ
= 8.5 which is

close to the expected value. The delay is 1.1T0 for the FIR filter with ∂ζ

∂φ
= 0 and is well
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compensated compared with the FIR filter with ∂ζ

∂φ
= 8.5.

For both FIR filters, the simulations show that the maximum stable damping rate with

those filters are limited by the phase shift to an unstable region produced by the feedback

itself, and are 1/(8.0T0) at the shifted tune ∆ν1 = 0.096 for the FIR filter with ∂ζ

∂φ
= 0 and

1/(3.1T0) at the shifted tune ∆ν1 = 0.10 for the FIR filter with ∂ζ

∂φ
= 8.5. These values agree

well with those calculated in Eq. (166). This result shows that the effect of group delay on

such a stability limit is small as expected.

For the damping part of the oscillation in Fig. 29, we can observe an increase of the

damping rate with the FIR filter with ∂ζ

∂φ
= 8.5 compared with that with the filter with

∂ζ

∂φ
= 0. The reason of this change of the gain is that the FIR filter with group delay

produces more output than a FIR filter without group delay for the damping oscillation.

For a growing oscillation, such group delay reduces the feedback damping effect. However,

the necessary feedback gain to overcome the growth of the oscillation is the same in these

two FIR filters because the feedback damping reduces the total growth rate and the effect

of the group delay become smaller.
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