### SPring-8 control system

山下明広 SPring-8 高輝度光源加速器の制御システム.

### **Outline**

- Introduction
  - History
  - Philosophy
- Software
  - 開発の実例
- Computing system
  - Network
  - Equipment controls
  - Database
- Summary

# Control system for SPring-8 complex



Undulators & BL components





112 VMEs

同一の制御システムを使用

### History

統一への道のり

SR/BL controls 1997 commissioning

Linac, Booster, SR 異なる制御システムを使用 していた。

New subaru 1998/8

> Booster 1999/1

Linac 2000/9

シームレスで高性能のシス テムへ統一

SPring-8 standard system

### Philosophy

- シンプルで分かりやすいシステム
- 標準/オープンなシステムの採用
  - ∞ 特製品は避ける
  - オープン / フリーなソフトウエア
  - MOSに特化した機能をなるべく使わない
    - ✓ UNIXでの互換
- 分散アーキテクチャー
  - ※ 容易な保守
  - 故障が広範囲に影響を及ぼさない
    - ≥ 1つのVME/WSがダウンしても運転続行可能

### Philosophy 2

#### Network

- 上位のプログラムはWS上で動作
- 下位のプログラムはVMEで動作
- 間はEthernet/FDDI

#### Database

- Every data on a relational database
- Logging data
  - Since 1997 commissioning
  - View from WWW
    - Every data from everywhere

# 制御用ソフトウエア

- No EPICS, no Java, no CORBA
- メッセージ駆動型
- クライアント・サーバ方式
- Sub system
  - ≪ 機器制御
    - GUI on Workstation
    - Equipment manager on VME
  - ∞ データー収集
  - ∞データー保存
  - ∞ アラーム監視、表示

# プログラミングの方法

- - ∠C language
    ∠X-mate for GUI (RAD tool)
- ∞加速器モデリング
  - **EFORTRAN**
- Web & database access
  - ≥ Python for cgi
- ≤外部業者に依頼
  - **≪**Alarm

# ソフトウエア製作体制

- 制御グループ
  - Middleware, DB, network
- 機器 (Magnet,RF,VAC..)のエキスパート
  - ・ 上位の操作プログラム(GUI)を作成する
  - VMEのプログラムを作成する
- Accelerator physicist
  - 運転用プログラムの作成
- プログラミングのエキスパートではない
  - 機器のエキスパートですらないこともある。
  - わかりやすい機器へのアクセス方法

# 上位のWSと下位のVMEの接続











機器を操作するためにどうアクセスすべきか?













# 機器の名前でアクセス

### メッセージ駆動

状態を知る: get/sr\_mag\_ps\_st\_h\_5\_1/current\_adc

値を指示する: put/sr\_mag\_ps\_q\_1/12.3A



プログラマーはVME crate/slot/address/adc factor 等には煩らわせられない Middlewareが面倒を見る

### Software framework



# 制御の流れ

- モデリングプログラム
  - 運転用パラメーターをデーターベースに書き込む
- GUI
  - メッセージを作成してそれをAccess serverに送る put/sr\_mag\_ps\_q\_1/12.3A
- Access server
  - メッセージを解釈してその機器が接続されているEM にメッセージを送る。
- Equipment manager on VME
  - メッセージを解釈して、その機器に命令を実行させ、 結果を戻す。

# その他のシステム

#### データー収集系

- 定期的(1sec-240sec)にデーターを収集してデーターベースに書き込む
- 永久保存
- アラーム監視
  - データーベース上の現在のデーターとリファレンス値を比較してアラームがあればデーターベースに書き込む
- アラーム表示
  - データーベース上のアラームデーターを読んで、アラームをグラフィカルに表示音声でも通知

# Case Study - Linacの場合

- VME
  - 27
- 制御対象点
  - 1003
- 信号数
  - 1320
- 9人
  - Part time job
- GUIパネル数
  - 22

# Case Study - Linacの場合

- 1999/9
  - Kick off
- 1999/11 中- 2000/3/1 (4.5 month)
  - SVOC(機器の名前,命令リストの作成
- 2000/2中
  - Equipment manager作成講習会
- 2000/2下
  - GUI作成講習会
- 2000/2中-2000/8/1 (5.5 month)
  - EM作成、テスト
- 2000/3-2000/8/1 (5 month)
  - GUI作成、テスト
- 2000/7-2000/8
  - 組み合わせテスト
- 2000/8/25
  - 立ち上げ開始

### Computing system 1

#### HP-UX, HP-RT, Solaris, Linux for OS

- = Multi-platform computing system
- Operator consoles

14 HP workstations

32/64bits CPU with HP-UX 11.0







# Computing system 2

#### Database server

HP high availability cluster N4000(5cpu)/L2000(4cpu) with HP-UX 11.0

If the main server is in trouble
System will be automatically switched to
a back up system

- ∠ Dual server, dual NIC, mirroring disks.
- Dual servers are monitoring each other by exchanging heart beats.

Availability>99.99%(0.5hr/yr downtime)

Main

Back up

# Computing system 3

#### Test of the HA system

- We exercised by turn-off the server power.
- ∠ 4 min. to takeover

#### Fail-over worked

- HA system has been in duty operation since 2001/Jan
- System stopped during the real operation
- Takeover was done smoothly.

#### Web server system

- Dell 6300 4CPU server+dual disk array
- Running with Red Hat Linux+Apache

### Network: Accelerator

### Optimize networks to meet the demands

FDDI optical fibers

Guarantee reliable equipment control
Fast(100Mbps) & reliable with dual ring topology
FDDI system will be replaced by Gigabit Ethernet

Gigabit Ethernet

Wide band-width for fast DAQ(image etc.)

Next generation backbone of controls with QoS

Shared memory network

Realize real-time control, ex. synchronized DAQ Linac BPM data will be taken with 1-60pps.

### **Equipment controls**

#### VMEbus for I/O controls

VME controllers:

- 1) HP743rt+HP-RT (discontinued)
  SR, Booster, NewSUBARU, BL need migration
- 2) IA(Intel Architecture)-32+Solaris7

New system for Linac and BL will be the standard CPUs K6-2(333MHz) & P-III(600MHz) are used

CPU board requirements: no fan, bootable from a flash disk

#### Field stations with PC system

Temporary control & data taking PC+PCI I/O cards(AI,DI,DO, GPIB) with Red Hat Linux

### Equipment controls 2

#### Direct I/O boards

AI, AO, DI, DO, PTG, PMC, SRAM, DRAM, WE7000, GP-IB

#### Remote I/O sub-system

- Master-slave type communication via optical fibers
- Slave cards can be any combination of AI,AO,DI,DO
- Fibers with star topology or RS485
- Slow control RIO and fast control RIO
- Fast: 20 μ sec data transfer to VME master
- Linac BPM DAQ (1-60pps) as first application
- More types of fast I/O remote boards are under development

#### PLC

Interlock system for magnet, vacuum etc.

Wide range of application field is supported

- Sybase ASE v.12 for RDBMS
- Every data on RDB
  - ∠ Parameters
    - ≥ コンフィギュレーション、校正値 etc.
    - ∞磁石の測量値
    - ∞モニターの校正データー
    - ∞データーの共有
      - ∞ プロセス、機器のロック
    - ∞ 運転のための設定値
      - ≥ モデルプログラムから値を入れてそれをもとに運転
    - ェアラームのthreshold,標準値

#### ∠ Logging data

- >15,000 packed signals
  - ∠ (a packed signal has 1~30bit digital status signals etc.)
- 180 tables
- 150GB data (include indexes since 1997)
- Data taking in every 1~240 sec period
- Store the data forever on the disk
  - Archive database

#### COD data

Slow feedback (30sec period)

#### 

Log every alarm event data for trouble analysis

- Growing up due to:
  - Beamline construction,
  - integration of booster
  - Integration of Linac
- Hard disk volume/cost is going up much faster than data accumulation.



Growing up of the DB

Database size is NOT a problem

#### Data access method

- Use C library functions
- API functions are developed
- Web browser
  Every data can be plotted
  - Specify date & time
  - Specify any graph attribute
  - Store raw-data to a disk file

CGI is written in Python script
Data access via Web is multi-platform
(HP-UX, Linux, Mac, Windows)



Everywhere in campus



### Database:inexpensive system

- Dell 4CPU server(550MHz)+dual disk array
- Running with Red Hat Linux+Sybase Linux version
  - Sybase 11.0.3 Free!
  - Performance was satisfactory
    - Reported in PCaPAC'99
  - Highly Reliable
     No system trouble for long run test
     ( Dec. 1999- )



Good for smaller/medium scale system and one point relief.

### Summary

- シンプルで分かりやすいシステム
  - 非プログラマーも自身の制御プログラムを作成
- 全データーを保存
  - 加速器開発の強力な手がかり
- 信頼性
  - 24/7operation
- 拡張性
  - SRのみならず、BL,booster, linac NewSUBARUでも証明された
  - 制御点数の増大もOK