

高輝度電子銃シミュレーション研究会 2006年12月7-8日,京都大学(宇治)

・ 時間領域境界要素法(TDBEM)による 粒子加速器航跡場の数値解析法の概要と課題

CONTENTS

- ー航跡場解析の背景
- 一時間領域境界要素法(TDBEM)
- ー時間領域境界要素法による航跡場解析
- -数値解析コード
- 一数值解析例
- -今後の課題

川口秀樹 室蘭丁業大学 電気電子T学科

藤田和広

北海道大学 大学院工学研究科

1.航跡場解析の背景

1.1 航跡場解析の概要

1.2 従来の航跡場の数値解析法

計算速度速 対称性のある形状(円柱、球)のみ 計算速度 住意形状 直線軌道のみ 航跡場+自己場 グリッド分散

2.時間領域境界要素法(TDBEM)

2.1 電磁場のタイプと電磁界数値解析

method em fields		FDM	FEM	BEM			
Static							
Quasi- Static	Frequency Domain						
	Time Domain					2D	2D Systems
High- Freq.	Frequency Domain						Axis-symm. Sys.
	Time Domain	FDTD /FIT				3D	Full 3D Systems

For open boundary problems For coupled problems with charged particles

Unstable in long time range calculation Heavy calculation cost Large required memory

2.2 時間領域境界積分方程式

Magnetic Field Integral Equation (MFIE)

$$\mathbf{B}(\mathbf{x},t) = \mathbf{B}_{ext}(\mathbf{x},t) - \frac{1}{4\pi} \int_{S} \left[\frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^{3}} + \frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^{2}} \frac{\partial}{c\partial t} \right] \times \mathbf{B}_{t}(\mathbf{x}', t - \frac{|\mathbf{x} - \mathbf{x}'|}{c}) dS'$$

Electric Field Integral Equation (EFIE)

$$\mathbf{E}(\mathbf{x},t) = \mathbf{E}_{ext}(\mathbf{x},t) - \frac{1}{4\pi} \int_{S} \frac{1}{|\mathbf{x} - \mathbf{x}'|} \mathbf{B}_{t}(\mathbf{x}',t - \frac{|\mathbf{x} - \mathbf{x}'|}{c}) dS'$$
$$- \frac{1}{4\pi} \int_{S} \left[\frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^{3}} + \frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^{2}} \frac{\partial}{c\partial t} \right] E_{n}(\mathbf{x}',t - \frac{|\mathbf{x} - \mathbf{x}'|}{c}) dS'$$

$$\mathbf{E} \cdot \mathbf{n} = E_n = -\frac{\partial \phi}{\partial n} = -\frac{\sigma}{\varepsilon}$$

$$\mathbf{B} \times \mathbf{n} = \mathbf{B}_t = \frac{\partial \mathbf{A}_t}{\partial n} = -\mu \mathbf{K}$$

$$\begin{array}{c} \frac{\partial \sigma}{\partial t} + div\mathbf{K} = 0\\ \frac{\partial \sigma}{\partial t} + div\mathbf{K} = 0 \end{array}$$

粒子加速器と航跡場解析 3 1 Time Domain MFIE $\mathbf{B}_t(\mathbf{x}', t \mathbf{B}(\mathbf{x},t) = \mathbf{B}_{ext}(\mathbf{x},t) - \frac{1}{4\pi} \int_{S} \left| \frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^{3}} + \frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^{2}} \frac{\partial}{c\partial t} \right| \times \mathbf{B}_{t}(\mathbf{x}',t) - \frac{|\mathbf{x} - \mathbf{x}'|}{c} dS'$ $\mathbf{x} - \mathbf{x}'$ $G_0 B_t + \sum_{k=1}^{L} G_k B_{t-k\Delta t} = B_{ext}$ Matrix equation of TDBEM $\mathbf{B}_t(\mathbf{x}, t)$ future $B(t-L\Delta t) B_{ext}(t)$ $B(t-\Delta t)$ $B(t-2\Delta t)$ B(t)+ + | | = $t = 2\Delta t$

3.時間領域境界要素法による航跡場解析

3.時間領域境界要素法による航跡場解析

3.1 粒子加速器と航跡場解析

4.数値解析コード

4.1 数值不安定性

<u>未知変数の配置</u> 因果律の評価 $c\Delta t$ \mathbf{x}' K, K $\mathbf{x} - \mathbf{x}'$ $t - (n+1)\Delta t$ $t-(n)\Delta t$ $div\mathbf{K}_t + \frac{\partial \sigma}{\partial t} = 0$ $t - (n-1)\Delta t$ <u>陰的スキーム</u> 2メッシュ補間積分 c∆t

メモリ削減 数値モデルの軸対称性

メモリ削減 数値モデルの軸対称性

$$\mathbf{B}(\mathbf{x},t) = \mathbf{B}_{LW}(\mathbf{x},t)$$

- $\frac{1}{4\pi} \int_{S'} \{ [-(\mathbf{m}' \cdot \mathbf{R})\mathbf{n}' + (\mathbf{n}' \cdot \mathbf{R})\mathbf{m}'] B_m(\mathbf{x}',t') + [-(\mathbf{l}' \cdot \mathbf{R})\mathbf{n}' + (\mathbf{n}' \cdot \mathbf{R})\mathbf{l}'] B_l(\mathbf{x}',t') \} dS'$
$$\mathbf{R} = \frac{(\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} + \frac{(\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^2} \frac{\partial}{c\partial t}$$

$$\mathbf{B}(\mathbf{x},t) = \mathbf{B}_{LW}(\mathbf{x},t)$$

- $\frac{1}{4\pi} \int_{S'} \{ [-(\mathbf{m}' \cdot \mathbf{R})\mathbf{n}' + (\mathbf{n}' \cdot \mathbf{R})\mathbf{m}'] B_m(\mathbf{x}',t') + [-(\mathbf{l}' \cdot \mathbf{R})\mathbf{n}' + (\mathbf{n}' \cdot \mathbf{R})\mathbf{l}'] B_l(\mathbf{x}',t') \} dS'$
$$\mathbf{R} = \frac{(\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} + \frac{(\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^2} \frac{\partial}{c\partial t}$$

<u>メモリ削減</u> 行列のスパース性

$$\mathbf{B}(\mathbf{x},t) = \mathbf{B}_{ext}(\mathbf{x},t) - \frac{1}{4\pi} \int_{S} \left[\frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^{3}} + \frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^{2}} \frac{\partial}{c\partial t} \right] \times \mathbf{B}_{t}(\mathbf{x}',t) - \frac{|\mathbf{x} - \mathbf{x}'|}{c} dS'$$

<u>メモリ削減</u>数値モデルの軸対称性+行列のスパース性

 $\mathbf{B}(\mathbf{x},t) = \mathbf{B}_{LW}(\mathbf{x},t)$ $-\frac{1}{4\pi} \int_{S'} \left\{ \left[-(\mathbf{m}' \cdot \mathbf{R})\mathbf{n}' + (\mathbf{n}' \cdot \mathbf{R})\mathbf{m}' \right] B_m(\mathbf{x}',t') + \left[-(\mathbf{l}' \cdot \mathbf{R})\mathbf{n}' + (\mathbf{n}' \cdot \mathbf{R})\mathbf{l}' \right] B_l(\mathbf{x}',t') \right\} dS'$ $\mathbf{R} = \frac{(\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} + \frac{(\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^2} \frac{\partial}{c\partial t}$

<u>計算時間</u> 並列計算化

4.3 散乱場表示定式化

<u>その他のTDBEMの問題</u>

バンチ入射(体積積分+特異性,非物理的擾乱),無駄なメッシュ,内部共振解+コホモロジー解

Scattered field TDBEM(S-TDBEM)

Conventional TDBEM

- スムースなバンチ入射
- メッシュ数削減
- 内部共振解の除去(安定化)
- 陽的スキームが可能
- 計算時間増

4.3 散乱場表示定式化

4.4 ウィンドウオプション

K.Bane and T.Weiland, "Wake force computation in the time domain for long structures", Proc. 12th Int. Conf. High Energy Accelerators, pp.314-316, 1983

4.4 ウィンドウオプション

陽的スキームが必要!

5.1 ピルボックスキャビティ

5.1 ピルボックスキャビティ

5.1 ピルボックスキャビティ

For the number of unknows N=5300, time step L = 8000, N_{window} =200,

-Full matrix: 1.8 TB

-Moving window (with $N_t=20$) : 2.5 GB, 5.2 hours with HITACHI SR-11000/K1

-Moving window (no matrix): less than 500 MB, about 4 days

For the number of unknows N=3720, time step L = 7600, N_{window} =290,

-Full matrix: 3.4 TB

-Moving window (with N_t =40) : 20.4 GB, 15.3 hours with HITACHI SR-11000/K1

-Moving window (no matrix): less than 500 MB, about 25 days

<u>フル3D化</u>

ウィンドウオプション化のコード作成済,実際の問題への適用 自己無撞着解析

M. Dohlus のイメージ電荷法との比較

加速器科学への応用

3次元構造コリメーター

バンチコンプレッサー

Moving window

ハイパフォーマンスコンピューティング

