SPring-8における10T-SCW放射光利用計画

2006年2月9日(木) SPring-8中央管理棟 1階講堂

SPring-8 加速器部門 米原 博人

検討の進捗状況と懸案事項

ビーム入射及び蓄積ビーム;既存利用者との共存
エミタッタンス増大、入射効率;非対称リング
「蓄積リングのラティス」 早乙女

• SCW放射光の熱除去 「SCW放射光の熱負荷」 依田

SCW性能評価 「SCWの磁場測定」 深見

専用施設設置計画趣意書

- 1. ビームラインの名称(仮称) 超伝導電磁石による高エネルギー放射光ビームライン
- 2. 機関名及び代表提案者名

機関名 (財)高輝度光科学研究センター

代表提案者 米原 博人

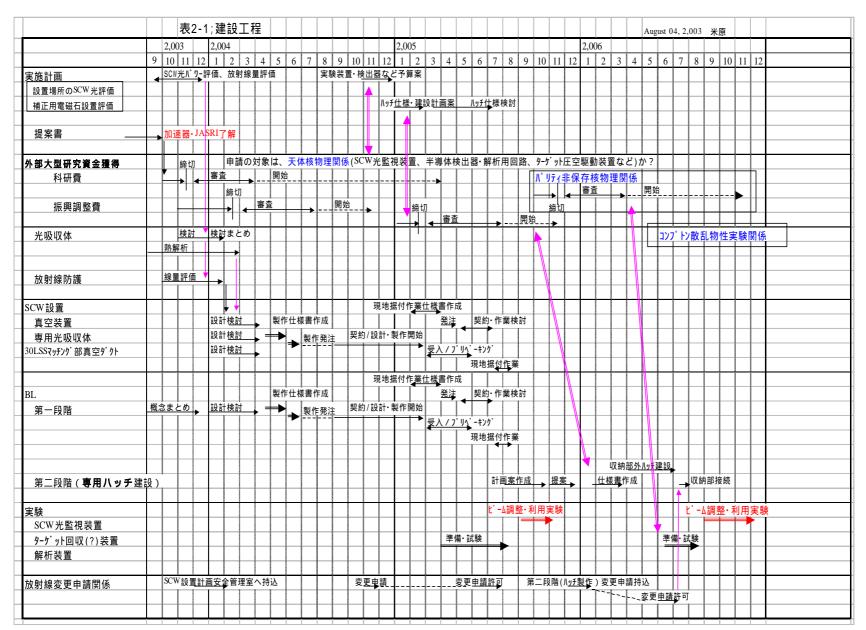
所属 (財)高輝度光科学研究センター 加速器部門

連絡先住所 〒679-5198 兵庫県佐用郡作用町光都1-1-1

研究概要・目的(ビームラインを専用とすることの必要性を含む)

超伝導電磁石とSPring-8蓄積リング8GeV電子ビームによる高エネルギー放射光を用いた 天体核物理学光核反応の実験的研究、 原子核準位パリティ非保存実験的研究、 磁気コンプトン散乱による物性研究 を目指す。

本提案の10T-SCWとSPring-8の8GeV電子ビームにより得られるSCW放射光は臨界エネルギーが430keVとなり、従来得られている偏向電磁石による放射光の臨界エネルギー30keVに比べ15倍程度高く、実効的に使用できる光子数量は7~8 MeVまで可能性があり、今までに得られなかった光子源として有用性が期待できる。また、SCW水平面内においてSCW放射光は直線偏光性を、水平面から上下に外れた角度では、円偏光性を持っている。エネルギースペクトルの高い部分は宇宙における黒体輻射分布に似ており、天体核物理・光核反応実験に有効である。偏光特性は、プローブとなる光子のスピンが規定できることから、原子核準位研究に欠かせない情報を付与できることを意味する。


従来の放射光とは光子エネルギーが格段に高くなり実験目的が異なること、加速器要素機器が新規開発・製作機器であることなどから、専用のビームラインが必要である。また、SCWによるビーム効果の緩和を目的として、調整用四極・六極電磁石、軌道補正用電磁石をSCW本体の前後に設置する必要がある。このような機器の増設、新機能を持った真空槽及び関連機器の設置のため、ビーム進行方向のみならず、横方向にも設置スペースが必要であり、SPring-8蓄積リングC長直線部が適当である。

提案者(提出前に更新・整理したい。)

計画統括、SCW担当 米原 博人、早乙女光一、熊谷 教孝 (SPring-8加速器部門)

天体核物理 光反応実験担当 宇都宮弘章、後神 進史 (甲南大学 理工学部) 早川 岳史、静間 俊行 (原子力研究所 関西研究所) 大垣 英明 (京都大学先端エネルギー工学研究 所)

原子核準位 パリティ非保存実験担当 藤原 守 (大阪大学 核物理研究センタ)

					1	
年次計画(H18~H22)						
項目	H18	H19	H20	H21	H22	
運転経費 (liq. He;2回 / 年)	2,759,000	10,000,000	10,000,000			22,759,000
リング設置費(評価を含む)		100,000,000		本格的利用実験開始		100,000,000
永久電流モードスイッチ撤去	1,400,000					1,400,000
磁場測定装置改良	2,300,000					2,300,000
補正用四極電磁石・電源		5,000,000				5,000,000
BL真空装置		100,000,000		 これ以降は、兌	三常的な	100,000,000
ハッチ建設		100,000,000	200,000,000	実験費用としてここには		300,000,000
光吸収・遮蔽真空槽(評価含)	8,425,000			記載しない。		8,425,000
天体核物理/光反応-照射装置		30,000,000				30,000,000
光核反応実験		2,000,000	2,000,000			4,000,000
原子核準位測定円偏光切替装置		5,000,000	10,000,000			15,000,000
線検出・データ収集装置		60,000,000	32,000,000			92,000,000
線偏極測定器			5,000,000			5,000,000
パリティ非保存実験	 		2,000,000	2,000,000	_	4,000,000
コンプ・トン散乱実験装置				100,000,000	_	100,000,000
コンプ・トン散乱実験				2,000,000	2,000,000	2,000,000
	14,884,000	412,000,000	261,000,000	104,000,000	2,000,000	