核異性体¹⁸⁰Ta^mの 光核生成部分断面積

甲南大学理工学部

9. Feb. 2006

Index

- 核異性体¹⁸⁰Ta^mの性質
- ¹⁸⁰Taの天体生成起源

まとめ

- 中性子直接計数による¹⁸¹Ta(,,n)¹⁸⁰Ta 全 光核反応断面積^{tot}の測定
- ・
 か射化法による ¹⁸¹Ta(,n)¹⁸⁰Ta^{gs} 部分光 核反応断面積 ^{gs}の測定
- ¹⁸¹Ta(,n)¹⁸⁰Ta^m 部分光核反応断面積 ^m
 の決定
- ¹⁸⁰Ta^m 天体生成起源に関する考察

Natural Isomer ¹⁸⁰Ta^m

- Odd-odd Nuclei (Z=73, N=107)
- Proton rich nuclei (p-nuclei)
- Solar Abundance ; 0.012% (the rarest)
- Half Life > 1.2×10^{15} y
- $E_x = 75 \text{keV}$
- J = 9 -

 180 Ta^{gs} •Half Life = 8.152h •J = 1⁺

- \rightarrow p-process (photodisintegration) ${}^{181}Ta(\gamma, n){}^{180}Ta{}^{gs,m}$
 - Weak branching s-process

Nucleosynthesis of ¹⁸⁰Ta^m

p-process in the pre-supernova phase of massive stars or during their explosions as type- supernovae Temperature ; 1.8 T[10⁹K] 3.0 Typical photon energy ; 300[keV]
 ¹⁸¹Ta(,n)¹⁸⁰Ta^m

 S-process in the Low-mass AGB star Temperature ; 2.9 T[10⁸K] 3.3 Typical photon energy ; 30[keV]
 ¹⁷⁹Hf()¹⁷⁹Ta(n,)¹⁸⁰Ta^m

Nd:YVO₄ Q-Switch Laser "INAZUMA"

Neutron Detectors Target Sample;¹⁸¹Ta ³He Proportional Counter $\times 20$ NaI(Tl) Scintillator Target Sample;¹⁹⁷Au Neutron Moderator ; Polyethylene

The measurements of total photoneutron cross sections with the direct neutron counting

- ¹⁸¹Ta(,n)¹⁸⁰Ta反応において、入射 線数、散乱中
 <u>性子数</u>を測定
- Ge検出器にて入射 線Energy分布を測定
- 線Energy広がりを考慮に入れ、測定Dataを元に
 Lorentz
 関数型の
 <u>励起関数を決定する
 </u>

NaI(Tl) Scintillator Spectra

The number of incident -ray

 $n_{\gamma} = \frac{Average \ channel \ for \ Pile - up \ Spectrum}{Average \ channel \ for \ Single \ Photon \ Spectrum} \times Total \ counts \ for \ Pile - up \ Spectrum$

LCS- Energy Distribution

	Fraction	Avg.E [MeV]
before	0.950	10.77
after	0.986	10.98

Irradiation time ; 5.67[hour]

Total Cross Sections

Fitting to Lorentz function (13 data points ; 7.58<E [MeV]<14.2)

$$\sigma^{tot}(E) = \sum_{k=1}^{2} \frac{\sigma_k}{1 + \frac{(E^2 - E_k^2)^2}{E^2 \Gamma_k^2}}$$

E_k: Resonance energy k: Peak Cross Section at E_k k: FWHM

The measurements of partial photoneutron cross sections with the photoactivation

- ¹⁸¹Ta(,n)¹⁸⁰Ta反応において、入射 線数の時間変化を追いながら、数時間照射を続ける
- ・ 照射終了後にGe Detectorにて、放射化したTarget sampleの 崩壊を測定する
- 得られたデータより、Total Cross Section、Partial Cross Sectionそれぞれの__<u>snn (E) (E)dE</u>の値を求める
- 上記の<u>Energy積分値の比</u>と、先に求めたLorentz型Fitting FunctionからPartial Cross Sectionの絶対値を求める

Ge Detector Set-up

Activated Ta foils on the acrylic cap

Ge Detector Efficiency

We obtained detection efficiency from Monte Carlo Simulation Code "EGS4" and Experimental Data with ²⁴¹Am and ¹⁰⁹Cd source.

LCS- Flux

Data Analysis for Direct Neutron Counting

$$\int_{S_n} n_{\gamma}(E) \sigma^{tot}(E) dE = \frac{n_n}{N_t \cdot f \cdot \varepsilon_n(E_n)}$$

n (E): The number of incident -ray $^{tot}(E)$: Total photoneutron cross section n_n : The number of scattered neutrons N_t : Area density of the target S_n : Tneutron separation energy $_n(E_n)$: Neutron detection efficiency f: Correction factor for attenuation in thick-target measurements

$$f = \frac{1 - e^{-\mu t}}{\mu t}$$

µ : Linear attenuation coefficientt: Thickness of the target material

Data Analysis for Activation Method
Activation Phase
$$\frac{dN(t)}{dt} = N_t \int_{S_n} \sigma^{gs}(E) I(t, E) dE - \lambda N(t)$$
N(t): The number of daughter nuclei
N_t: Area density of the target
S_n: Neutron threshold
^{gs}(E): Partial photoneutron cross section
I(t,E): -ray Flux
: Decay constant of daughter nuclei
Decay Phase
$$\int_{t_{max}}^{t_{max}} \lambda \cdot N(t_{ir}) \cdot e^{-\lambda t} \cdot h \cdot i \cdot g_X(E_X) dt = Yield$$

$$t_{start}: Start time of the measurement
h: Emission Intensity of X-ray
i: Self absorption of the targets
x(EX): Efficiency of the Ge Detector
tw: Stop time of the irradiation
$$\int_{s_n} n_{\gamma}(E) \sigma^{gs}(E) dE = \frac{Yield \cdot e^{\lambda t_{tr}}}{N_t \cdot h \cdot i \cdot \varepsilon_X(E_X) \cdot (e^{-\lambda t_{start}} - e^{-\lambda t_{stop}})} \cdot \frac{\int_0^{t_{tr}} K(t) dt}{\int_0^{t_{tr}} K(t) \cdot e^{\lambda t} dt}$$

$$n_{\gamma}(E) = \int_0^{t_{tr}} I(t, E) = \int_0^{t_{tr}} J(E) K(t) dt$$$$

Partial Cross Sections ^m

$$\sigma^{m} = \sigma^{tot} - \frac{\int_{S_{n}} n_{\gamma}(E) \sigma^{gs}(E) dE}{\int_{S_{n}} n_{\gamma}(E) \sigma^{tot}(E) dE} \times \sigma^{tot}$$

$$\int_{S_n} n_{\gamma}(E) \sigma^{gs}(E) dE = \frac{Yield \cdot e^{\lambda t_{ir}}}{N_t \cdot h \cdot i \cdot \varepsilon_X(E_X) \cdot (e^{-\lambda t_{start}} - e^{-\lambda t_{stop}})} \cdot \frac{\int_0^{t_r} K(t) dt}{\int_0^{t_{ir}} K(t) \cdot e^{\lambda t} dt}$$

et.

$$\int_{S_n} n_{\gamma}(E) \sigma^{tot}(E) dE = \frac{n_n}{N_t \cdot f \cdot \varepsilon_n(E_n)}$$
$$\sigma^{tot}(E) = \sum_{k=1}^2 \frac{\sigma_k}{1 + \frac{(E^2 - E_k^2)^2}{E^2 \Gamma_k^2}}$$

The case of ¹⁹⁷Au $photoactivation = (0.99 \pm 0.015)$ neutron counting Systematic error for tot : 4.4% (n : 3.0%, ":3.2%)

Experimental results, and comparison with theoretical models

The Solid Line ; Combinatorial NLD model The Dashed Line ; Statistical NLD model

Consideration for the nucleosynthesis of ¹⁸⁰Ta

- p-processは比較的高いエネルギー

 (1.8 T[10⁹K] 3.0; typically 300[keV])で起こ
 る為、¹⁸⁰Taの基底状態と9⁻¹ 励起状態が熱平衡
 状態となり、^mが生成率決定因子となり得ない。
- p-processによって生成された¹⁸⁰Taは、再度光核 分解を起こし¹⁷⁹Taへ崩壊する事が考えられ、その反応断面積の実験情報が必要となる。

Summary

- <u>産総研のLCS-</u>線を用いて¹⁸¹Ta(,n)¹⁸⁰Ta^m部分 光核反応断面積の測定を行い、6点のE において 結果を得た。
- ¹⁸⁰Taの熱平衡や、光核分解の効果により、本実験 結果だけからp-processによる¹⁸⁰Taの生成率を決定 する事は出来ない。
- Spring-8にSCWを設置する事で発生する放射光を 使えば¹⁸⁰Ta^m(,n)¹⁷⁹Ta消滅断面積の測定が可能 となる。
- 上記の放射光のエネルギー分布はp-process光子のそれと酷似しており、本研究にとって最適の光源として期待できる。

