SCW放射光が拓〈天体核物理の未来

宇都宮弘章(甲南大学) SPring-8 研究会 12月24日(水)

<話の概要>

- ∺ 産総研のレーザー逆コンプトンガンマ線
- ∺ SCW放射光のよるpプロセス研究
- ※他のいつかのトピックス
- 🔀 まとめ

Real Photon Sources in Nuclear Physics

- **Radioactive Isotopes**
- **Bremsstrahlung**
- **H** Positron Annihilation in Flight

H Laser Inverse Compton scattering

1963 : Idea by Milburn and Arutyunian & Tumanian 1980s: Practical use at Frascati (Italy)

SCW放射光 SPring-8

However, its use for nuclear astrophysics had been ignored for a long time.

LCS(Laser Compton scattering) ガンマ線(産総研 AIST) 準単色エネルギー可変 10⁴⁻⁵ photons/sec 100% 直線偏光

BGO

BF₃ counter

•Energy

Neutron Detector Double rings of 16 ³He counters embedded in polyethylene

光中性子断面積の励起関数測定

⁹Be(γ,n)αα < 超新星爆発 > ¹⁸¹Ta(γ,n)¹⁸⁰Ta < 超新星爆発 > D(γ,n)p < ビッグバン >

K.Y. Hara et al. 2003

励起関数測定 2003年

#186W(γ ,n)185W #187Re(γ ,n)186Re #188Os(γ ,n)187Os #139La(γ ,n)138La #93Nb(γ ,n)92Nb #141Pr(γ ,n)140Pr

- <sプロセス> <sプロセス、宇宙時計 > <sプロセス、宇宙時計 > <pプロセス >
 - <pプロセス>

s, r, p -processes

Arnould & Goriely 2003

p-process nuclei

Arnould (1976) Woosley & Haward (1978) Rayet et al. (1995) Rauscher et al. (2002)

35 stable nuclei
⁷⁴Se - ¹⁹⁶Hg

- **(γ,n)(γ,p)(γ,α)** and inverse n-, p-, and α capture
- 2000 nuclei , 20000 reactions inc. weak transformation
- <mark>₩ T₉ :1.7 ~3.3</mark>
- **K** O/Ne layer of massive stars

Pre-supernova phase or Type II -supernova explosion

Pプロセス核

nucleus	Anders & Grevesse 13	error (%)	Palme & Beer [15]	error (%)
⁷⁴ Se	0.55	6.4	0.6	5
⁷⁸ Kr	0.153	18	0.19	-
⁸⁴ Sr	0.132	8.1	0.12	5
⁹² Mo	0.378	5.5	0.38	5
⁹⁴ Mo	0.236	5.5	0.23	5
⁹⁶ Ru	0.103	5.4	0.1	10
⁹⁸ Ru	0.035	5.4	0.03	10
¹⁰² Pd	0.0142	6.6	0.014	10
106Cd	0.0201	6.5	0.02	10
¹⁰⁸ Cd	0.0143	6.5	0.014	10
¹¹³ In	0.0079	6.4	0.008	10
¹¹² Sn	0.0372	9.4	0.036	10
¹¹⁴ Sn	0.0252	9.4	0.024	10
¹¹⁵ Sn	0.0129	9.4	0.013	10
¹²⁰ Te	0.0043	10	0.0045	10
¹²⁴ Xe	0.00571	20	0.005	-
¹²⁶ Xe	0.00509	20	0.004	-
¹³⁰ Ba	0.00476	6.3	0.005	5
¹³² Ba	0.00453	6.3	0.005	5
¹³⁸ La	0.000409	2	0.0004	5
¹³⁶ Ce	0.00216	1.7	0.002	5
¹³⁸ Ce	0.00284	1.7	0.003	5
144Sm	0.008	1.3	0.008	5
¹⁵² Gd	0.00066	1.4	0.001	5
¹⁵⁶ Dy	0.000221	1.4	0.0002	5
¹⁵⁸ Dy	0.000378	1.4	0.0004	5
¹⁶² Er	0.000351	1.3	0.0004	5
¹⁶⁴ Er	0.00404	1.3	0.0042	5
¹⁶⁸ Yb	0.000322	1.6	0.0003	5
¹⁷⁴ Hf	0.000249	1.9	0.0003	5
¹⁸⁰ Ta	2.48e-06	1.8	2.00e-06	10
¹⁸⁰ W	0.000173	5.1	0.0002	7
184Os	0.000122	6.3	0.0001	5
¹⁹⁰ Pt	0.00017	7.4	0.0001	10
¹⁹⁶ Hg	0.00048	12	0.001	20

1013

3

С

Ο

 \circ

(γ,α)

β+

(γ,p)

N

NUMBER OF NEUTRONS N

.

Astrophysical Energy Window for (γ,n) reactions

λ

Mohr 2000

一対の光子と原子核が単位時間に 起こす光核反応の回数

$$L(T) = \int_0^\infty c \ n_{\gamma}(E,T) \ \sigma_{\gamma}(E) \ dE$$

em

Photonuclear Cross section

 $\sigma_{\gamma}(E)$

$$n_{\gamma}(E,T) = \left(\frac{1}{\pi}\right)^2 \left(\frac{1}{\hbar c}\right)^3 \frac{E^2}{\exp\left(E / kT\right) - 1}$$

Stellar condition

Photoreactions on nuclei in excited states are important.

pigmy resonance

(y,n)核反応率の直接決定 従来の方法 $\lambda(T) = \int_{0}^{\infty} c n_{\gamma}(E,T) \sigma_{\gamma}(E) dE$

いくつかのBremsstrahlungスペクトルを重ね合わせて 黒体輻射のプランクスペクトルを再現

SCW放射光による直接測定 (γ ,n)反応率 $\lambda(T) = \int_{0}^{\infty} c n_{\gamma}(E,T) \sigma_{\gamma}(E) dE$

・超新星爆発時の高温の熱浴(T₉ = 1.7 -3.3)で得られるガンマ線のエネルギー 分布を良く再現する。 γ -processの研究に最適

・中性子しきい値エネルギーでも大強度 10⁸-10⁹ photons/sec/MeV

光中性子反応断面積のしきい値振る舞いの決定

$$\Re \sigma(E\gamma) = \sigma_0 \left[(E\gamma - Sn) / Sn \right]^* p$$

p = I + ½, I: 中性子の軌道角運動量 σ₀ と pは実験パラメタ

SCW放射光を用いて反応率を測定し, σ₀ と pを決める。

$$\lambda(T) = \int_0^\infty c \ n_\gamma(E,T) \ \sigma_\gamma(E) \ dE$$

List of photonuclear reactions to be studied by activation technique at SPring-8 : 22 natural samples: 47 reactions

Samples	Photoreactions	p-nuclides
Se	⁷⁶ Se(9.36%)(γ ,n) ⁷⁵ Se(T=120 d) ⁷⁴ Se(0.89%)(γ ,n) ⁷³ Se(T=7.15 h)	⁷⁴ Se
Kr	⁸⁰ Kr(2.25%)(γ ,n) ⁷⁹ Kr(T=1.46 d) ⁷⁸ Kr(0.35%)(γ ,n) ⁷⁷ Kr(T=1.24 d)	⁷⁸ Kr
Sr	${}^{86}Sr(9.86\%)(\gamma,n){}^{85}Sr(T=65 d)$ ${}^{84}Sr(0.56\%)(\gamma,n){}^{83}Sr(T=1.35 d)$	⁸⁴ Sr
Ru	⁹⁸ Ru(1.88%)(γ,n) ⁹⁷ Ru(T=2.9d) ⁹⁶ Ru(5.52%)(γ,n) ⁹⁵ Ru(T=1.64 h)	⁹⁴ Ru ⁹⁶ Ru
Pd	${}^{104}Pd(11.1\%)(\gamma,n){}^{103}Pd(T=17 d) \\ {}^{102}Pd(1.02\%)(\gamma,n){}^{101}Pd(T=8.47 h)$	¹⁰² Pd

List (continued)

Samples	Photoreactions	p-nuclides
		100
Cd	$^{110}Cd(12.5\%)(\gamma,n)^{109}Cd(T=1.27 y)$	¹⁰⁸ Cd
	$^{108}Cd(0.89\%)(\gamma,n)^{107}Cd(T=6.50h)$	¹⁰⁶ Cd
	106 Cd(1.25%)(γ ,n) 105 Cd(T=55.5 m)	
In	¹¹³ In(4.29%)(γ ,n) ¹¹² In(T=20.6 m)	¹¹³ In
Sn	¹¹⁴ Sn(0.65%)(γ ,n) ¹¹³ Sn(T=115 d)	¹¹⁴ Sn
	112 Sn(0.97%)(γ ,n) 111 Sn(T=35.3 m)	¹¹² Sn
Te	122 Te(2.60%)(γ ,n) 121 Te(T=154 d)	¹²⁰ Te
	120 Te(0.096%)(γ ,n) 119 Te(T=4.70 d)	
Ba	$^{132}Ba(0.101\%)(\gamma.n)^{131}Ba(T=11.5 d)$	¹³⁰ Ba
	$^{130}Ba(0.106\%)(\gamma,n)^{129}Ba(T=2.23 h)$	
Ce	$^{140}Ce(88.5\%)(\gamma,n)^{139}Ce(T=138 d)$	¹³⁸ Ce
	$^{138}Ce(0.25\%)(\gamma,n)^{137}Ce(T=1.43 d)$	¹³⁶ Ce
	$^{136}Ce(0.19\%)(\gamma,n)^{135}Ce(T=17.7 h)$	
Sm	144 Sm(3.1%)(γ .n) 143 Sm(T=8.83 m)	¹⁴⁴ Sm

List (continued)

Samples	Photoreactions	p-nuclides	
Gd	${}^{154}Gd(2.18\%)(\gamma,n){}^{153}Gd(T=242 d)$ ${}^{152}Gd(0.10\%)(\gamma,n){}^{151}Gd(T=124 d)$	¹⁵² Gd	
Dy	¹⁶⁰ Dy(2.34%)(γ ,n) ¹⁵⁹ Dy(T=144 d) ¹⁵⁸ Dy(0.10%)(γ ,n) ¹⁵⁷ Dy(T=8.14 h) ¹⁵⁶ Dy(0.06%)(γ ,n) ¹⁵⁵ Dy(T=9.9 h)	¹⁵⁸ Dy ¹⁵⁶ Dy	
Er	${}^{166}\text{Er}(33.6\%)(\gamma,n)^{165}\text{Er}(T=10.4 \text{ h})$ ${}^{164}\text{Er}(1.61\%)(\gamma,n)^{163}\text{Er}(T=1.25 \text{ h})$ ${}^{162}\text{Er}(0.14\%)(\gamma,n)^{161}\text{Er}(T=3.21 \text{ h})$	¹⁶⁴ Er ¹⁶² Er	
Yb	170 Yb(3.05%)(γ ,n) ¹⁶⁹ Yb(T=32.0 d) ¹⁶⁸ Yb(0.13%)(γ ,n) ¹⁶⁷ Yb(T=17.5 m)	¹⁶⁸ Yb	
Hf	${}^{176}\text{Hf}(5.21\%)(\gamma,n){}^{175}\text{Hf}(T=70\text{ d})$ ${}^{174}\text{Hf}(0.162\%)(\gamma,n){}^{173}\text{Hf}(T=23.6\text{ h})$	¹⁷⁴ Hf	
Та	$ \begin{array}{c} {}^{181}{}Ta(99.988\%)(\gamma,n){}^{180}{}Ta{}^{gs}(T{=}8.15~h) \\ {}^{180}{}Ta(0.012\%)(\gamma,n){}^{179}{}Ta(T{=}1.82~y) \end{array} $	¹⁸⁰ Ta	

List (continued)

Samples	Photoreactions	p-nuclides
W	${}^{182}W(26.5\%)(\gamma,n){}^{181}W(T=121 d)$ ${}^{180}W(0.12\%)(\gamma,n){}^{179}W(T=37.1 m)$	180W
Os	${}^{186}Os(1.58\%)(\gamma,n){}^{185}Os(T=93.6 \text{ d})$ ${}^{184}Os(0.020\%)(\gamma,n){}^{183}Os(T=13.0 \text{ h})$	¹⁸⁴ Os
Pt	${}^{194}Pt(32.9\%)(\gamma,n){}^{193}Pt(T=4.33 d)$ ${}^{192}Pt(0.79\%)(\gamma,n){}^{191}Pt(T=2.96 d)$ ${}^{190}Pt(0.01\%)(\gamma,n){}^{189}Pt(T=10.9 h)$	¹⁹⁰ Pt
Hg	${}^{198}\text{Hg}(9.97\%)(\gamma,n){}^{197}\text{Hg}(T=2.67\text{ d})$ ${}^{196}\text{Hg}(0.15\%)(\gamma,n){}^{195}\text{Hg}(T=1.73\text{ d})$	¹⁹⁶ Hg

¹⁸⁰Ta (最稀少元素で天然に存在する唯一の核異性体)の γ -process起源

¹⁸⁰Ta**生成**(γ -process)

₩ ¹⁸⁰Taの基底状態と核異性体との熱的均衡の成立

T₉ = 1.7 – 3.3 O/Ne layers of Massive Stars during
Presupernovae or Supernovae

$$\frac{N_m}{N_0} = \frac{g_m \exp(-E_m / kT)}{G}$$
$$G = \sum_i g_i \exp(-E_i / kT), \ g_i = 2 \ J_i + 1$$

H. Utsunomiya et al., 2003

産総研LCS 線を使った実験

¹⁸⁰Ta消滅(γ-process)断面積の測定

¹⁸⁰Ta[0.012%](γ ,n)¹⁷⁹Ta (T_{1/2}=1.82 y)

ターゲット物質が天然に存在する最稀少元素なので enriched targetを用意することは論外。

SCW大強度放射光を利用した放射化実験が可能 <後神 講演>

励起状態にある原子核からの光核反応 天体核反応固有の問題

H(γ,γ')実験により、中性子しきい値以下の E1、M1ガンマ線強度を決定する。

1)¹⁸⁰Taのs-process生成と脱励起消滅 AGB星での特殊なs-process ¹⁷⁹Hf(e-v)¹⁷⁹Ta (n,γ)¹⁸⁰Ta^m(γ,γ')¹⁸⁰Ta^o (T_{1/2}=8.1 h)

2)s-process温度計 ¹⁷⁶Lu核異性体(123keV 1-準位 3.7 h)励起

核異性体の探索 核異性体型宇宙温度計 138Laの研究

第180Ta, 176Lu 温度計 第138La ガンマプロセス温度計? < < 早川 講演 >

まとめ

- ∺SCW放射光のスペクトルは、天体核物理研究(pプロ セス研究)に天性の適合性を持つ。
- ※放射化法の実験が可能 <フェーズ1実験>
- ∺(γ,γ')実験 熱平衡状態(励起状態)にある原子核の 光核反応 < フェース'2実験 >
- ∺系統的な研究 pプロセス研究のメッカ
- 岩 宇宙物理のための核データベース整備計画 甲南大学 - ブリュッセル自由大学間学術協定に基づき、2004年4月から 5年計画がスタート