

高エネルギー放射光を用いた¹⁷⁶Lu、¹⁸⁰Ta核異性体の 生成及び消滅断面積の測定実験

日本原子力研究所 関西研究所 光量子科学研究センター

静間 俊行

内容

1. はじめに・・・ ¹⁷⁶Lu、¹⁸⁰Ta核異性体について

2.¹⁸⁰Ta核異性体の元素合成過程(s-process)

3. s-process温度計:¹⁷⁶Lu

4. 高エネルギー放射光による光核反応実験

5. まとめ

¹⁷⁶Luと¹⁸⁰Ta 核異性体について

180Ta核異性体の生成過程

s-process中では、(γ,γ')反応により¹⁸⁰Ta核異性体が消滅する

s-process中での¹⁸⁰Ta核異性体の光脱励起

s-process中では、1MeV領域のガンマ線が重要

1MeV以上

Stuttgart Dynamitron 電子加速器 制動放射光

1MeV以下

適当な光源がな〈、断面積測定データなし

制動放射光による^{180m}Ta 脱励起実験

¹⁸⁰Ta核異性体の実効的半減期

強い励起エネルギー依存性

1MeV以下の中間状態が存在

¹⁸⁰Ta核異性体は、s-process 中で残らない可能性大

Belic *et al*., PRC65(2002)035801

1MeV以下の中間状態

基底状態

Saitoh et al., NPA660(1999)121

s-process宇宙温度計¹⁷⁶Lu

Nir-El et al., PRC68(2003)067301

176Lu核異性体の準位構造

	π	E _x (keV)	E _g (keV)
$K^{\pi} = 4^{+}$	6+	709	709
	7+	787	787
	8+	888	888

基底状態(K^π = 7⁻)からK^π = 4⁺バンドへの光励起断面積の 測定実験

放射化による崩壊ガンマ線測定

放射化による生成数

 I_{γ} =1x10¹⁰ /keV/s (6T,1mA) I_{s} =0.057 eV b N_{t} =1g/cm² x 0.012%

8時間照射後の生成数N=5x103

¹⁸⁰ Taの1崩壊当たり				
93keV γ級	泉	4.1%		
55.8keV K	₁X線	40.3%		
54.6keV K	₂ X線	23.4%		

55.8 keV X線の測定 ε=10%、8時間測定 N=100カウント

収量の見積もり(¹⁷⁶Lu)

 I_{γ} =1x10¹⁰ /keV/s (6T,1mA) I_{s} =0.057 eV b N_{t} =1g/cm² x 2.59%

4時間照射後の生成数N=6x105

¹⁷⁶ Lu核異性体の1崩壊当たり				
88keV γ 線	9.2%			
55.8keV K ₁ X線	5.2%			
54.6keVK ₂ X線	3.0%			

88 keV γ**線の測定** ε=10%、4時間測定 N=3000<mark>カウン</mark>ト

エネルギー準位の高い中間状態からの影響 数MeV以上

励起関数の測定

差分法による反応断面積の測定

光子数、エネルギー分布の見積もり

<mark>放射化法</mark>¹¹⁵In(γ,γ')^{115m}In ¹¹³In(4.3%)、¹¹⁵In(95.7%) ¹¹⁵In核異性体 T_{1/2}=4.5時間、E_x=336keV

NRF法

Nuclear Resonance Fluorescence

¹¹⁵In、¹³C、²⁷AI インビームガンマ線計測

180Ta核異性体の光脱励起と核構造的特徴

積分断面積 5.7x10⁻⁵ keV b Belic et al., PRL83(1999)5242

*E*_x=1.076 MeV I^π=8⁺ (*K*=5) *E*1励起

Breit-Wigner 分散公式

$$I_s = \pi \left(rac{\hbar c}{E_{
m ph}}
ight)^2 rac{\pi \Gamma_{
m a} \Gamma_{
m b}}{\Gamma_{
m a} + \Gamma_{
m b}}$$

Γ_a: バンド内への遷移強度幅
 3.85x10⁻⁵ eV (回転モデル)

Γ_b: バンド外への遷移強度幅 2.98x10⁻⁵ eV Walker et. Al

Walker et. Al PRC64(2001)061302(R)

NRF法によるback decay ガンマ線の観測

まとめ

1MeV領域ガンマ線を用いた¹⁷⁶Lu、¹⁸⁰Taの光核反応(γ,γ')実験

稀少同位体 ¹⁷⁶Lu(2.59%)、^{180m}Ta(0.012%)

励起断面積が小さい

□□ 高エネルギー放射光を用いた光核反応実験

放射化実験

E_γ<1MeV以下のガンマ線による反応断面積測定 磁場を変え、励起関数測定

光子数や、エネルギー分布の正確な見積もりが必要 ¹¹⁵In(γ,γ')^{115m}In

NRF法によるインビームガンマ線実験

¹⁸⁰Ta核異性体の光励起におけるback decayガンマ線の計測