Generation of High-Energy Synchrotron Radiation with a 10T Superconducting Wiggler Installed in the SPring-8 Storage Ring

<u>K. Soutome</u>, S. Date', H. Ego, T. Fukui, M. Hara, N. Hosoda, Y. Kawashima, M. Kodera, N. Kumagai, T. Magome, M. Masaki, T. Masuda, S. Matsui, T. Nakamura, T. Noda, Y. Ohashi, T. Ohshima, M. Oishi, H. Saeki, S. Sasaki, J. Schimizu*, M. Shoji, S. Takano, M. Takao, T. Takashima, H. Takebe, K. Tamura, H. Tanaka, Y. Taniuchi, K. Tsumaki, T. Yorita, C. Zhang, H. Yonehara JASRI/SPring-8, Japan * The Japan Research Inst., Ltd, Japan

A. Batrakov, G. Karpov, G. Kulipanov, M. Kuzin, V. Shkaruba, A. Skrinsky, N. Mezentsev Budker INP, Russia

Genaration of High-Energy γ-Rays in MeV-Region with

10 T Superconducting Wiggler (by Budker INP) installed in

8 GeV Electron Storage Ring (at SPring-8)

Contents

•Three-Pole Superconducting Wiggler Field, Orbit, Photon Flux

•Results of Beam Tests (< 1mA)

Effects of the Wiggler: Betatron Tunes, Beam Size, ...

Photon Spectrum Measurement

Possible Applications

Three-Pole Superconducting Wiggler

Quadrupole and Sextupole Components

Photon Flux

Horizontal Beam Size and Emittance

Bunch Length : 1.4 times longer

Energy Spread : 1.4 times larger

Distortion of Betatron Function

Dynamic Aperture

Tracking: Ring with Error Fields

Photon Energy Spectrum

Possible Applications

- •Slow Positron Beams by Pair-Creation
- Nuclear Photoreaction Cross Section (¹⁶O, ¹⁸⁰Ta, ...)
- High-Energy Compton Scattering (~500keV)
- Generation of Neutrons (γ + ⁹Be)
 -

<u>Summary</u>

- A 10T superconducting wiggler (SCW) was installed in the 8GeV electron storage ring at SPring-8 and beam tests were carried out.
- Beam injection was possible with high fields of SCW.
- Beam parameters and a photon spectrum were measured. The results agreed with calculations.
- Effects of SCW are not small. (large β at SCW) \rightarrow incompatible with user-time
- After the beam tests SCW was removed from the ring.
- We are now looking for a possible place of re-installation of SCW for real applications.