非中性陽電子プラズマの形成とその応用

大島永康^{a,b}、小島隆夫^b、新垣恵^{a,b}、 毛利明博^b、小牧研一郎^a、山崎泰規^{a,b}

- a) 東大院総合·物理
- b) 理研・原子物理

Motivation

RIKEN Project :

Cold HCI beam (<~eV/q) generation project.

Requirements :

* Positrons of >10⁶ for positron cooling of HCIs * UHV (<10⁻¹¹Torr) to avoid recombination loss of HCIs

> e + accumulator works in UHV with relatively high efficiency

Concept of the new accumulation

Collisional dumping with trapped electrons : GAS FREE

Positron Accumulation Scheme

Multi-Ring Trap (MRT)

a) e- Plasma Formation

Required $\triangle E$ of e⁺ for Thier Accumulation

(In case of W) If $\triangle E$ is >~3eV, re-emittd e+ would be accumulated.

Required e⁻ Plasma for e⁺ Accumulation

 $\Delta E_{in} < (2 \alpha n_e L)^{1/2}$

E i: e⁺ injection Energy ∆E: Required Energy Loss (~3eV) n_e: e⁻ Plasma Density L : e⁻ Plasma Length

e⁺Injection Energy into e⁻ Plasma

Accumulation Efficiency of Re-emitted e⁺ (Order Estimation) $\frac{\mathsf{E}_{trap}}{\mathsf{E}_{max}} = \frac{(\Delta \mathsf{E}_{trap}/2) + (\alpha \ \mathsf{n}_{e} \ \mathsf{L} \ / \Delta \mathsf{E}_{trap})}{\beta \ \mathsf{n}_{e} \mathsf{r}_{max}^{2}}$ $(\alpha = 1.5 \times 10^{-12} \text{ cm}^{2} \text{ eV}^{2}, \beta = 4 \times 10^{-7} \text{ cm} \text{ eV})$

Superconducting Solenoid

Slow Positron Source

Experimetnal Setup

a) Multi-Ring Trap (MRT)

b) Re-Moderator Holder (movable)

Confiment of e⁻ Plasma

Plasma Parameters Total e⁻ Number : $N_{te}=1.8 \times 10^{10}$ (80% in Spheroid) Plasma Diameter : $D_{pla}=1.1$ (mm) Plasma Length : $L_{pla}=33$ (cm) e⁻ Density : $n_{e}=7 \times 10^{10}$ (cm⁻³)

Optimization of Re-moderator Bias

Estimation of e⁺Accumulation Efficiency (ε)

$$\varepsilon = \eta \times E_{trap} / E_{max} = \sim 0.02$$

$$\eta = \sim 0.1 : \text{Re-moderation Efficiency}$$

$$\frac{E_{trap}}{E_{max}} = \frac{(\Delta E/2) + (\alpha n_e L / \Delta E)}{\beta n_e r_{max}^2} = \sim 0.20 \qquad \Delta E = \sim 3eV, r_{max} = 2.5 \times 10^{-2} \text{ cm} \\ (\alpha = 1.5 \times 10^{-12} \text{ cm}^2 \text{ eV}^2, \beta = 4 \times 10^{-7} \text{ cm eV})$$

Effect of Positive Ions

 ϵ : e ⁺Accumulation Efficiency into the Harmonic Well

Summary

* e⁺ were accumulated directly into UHV trap with an e⁻ plasma

* Accumulation Efficiency

To be improved

1% (v.s. injected e⁺ into re-moderator) * Accumulation Rate

3.6x10² e⁺/s/mCi (²²Na)

Accumulation Rate

(x~50)

- Ne moderator efficiency : $0.22\% \rightarrow 0.7\%$ x 3
- e⁺ injection efficiency : $50\% \rightarrow 100\%$ x 2
- e⁺ beam daiameter (@B=10mT) : 10mm ---> 5mm \times 4
- e^- plasma length : 30cm ---> 60cm x 2 **Re-moderator**

 $W(-3eV) \longrightarrow Cu(-1eV)$: low required energy loss x? In site annealing : higher re-moderation efficiency x?

SPring8 Positron Source

Positron Trap Applications

Plasma Physics (e+ e- Plasma, Astrophysics, e+ cooling) Low Energy Collision (Interaction with Gases) Anti-Matter Production (Cold Hbar Production) High Quality Positron Beam Source (Ultra Low Energy Beam / Micro Beam) High Density Positronium Production (Ps TOF, Ps BEC, Ps Beam, Hbar Production)