

物質 材料研究機構 物質研究所

赤羽 隆史

- 化学研磨の併用による深さ方向の分解能の向上
- イオン注入により生成される欠陥と注入イオンの相互作用

化学研磨の併用による深さ分解能の向上

化学研磨の併用による深さ分解能の向上

実験の概要

イオン注入 He⁺ $\xrightarrow{60 \text{ keV}}$ Cz-Si (100) 1×10¹⁵ cm⁻²

TRIMによるHe⁺(60 keV)注入Si中のイオン分布の計算結果

磁場誘導型陽電子ビーム装置

S-E plots for Si implanted with He⁺(1x10¹⁵/cm²,60keV)

単純空孔欠陥の深さ分布

エッチング試料の陽電子寿命測定

従来法では 20 ps の寿命の違いは分離できない

化学エッチングにより, 初めてHe修飾空孔の存在を示すことができた

アニール試料でのSパラメータの深さ依存性

単純な空孔の場合, アニール温度上昇でS値は増加した後減少していく

300 アニールでSが減少500 アニールでSが増加

欠陥種のアニール温度依存性

Si implanted with O⁺(2x10¹⁵/cm²,180keV)

欠陥挙動の深さ依存性

Oイオン注入SiのS-parameter、陽電子寿命

Low S & long lifetime

CDB spectra at 2 keV for O+ implanted Si Vacancy-rich region (< 100 nm)

Vacancy clusters

Si implanted with O⁺(2x10¹⁵/cm²,180keV)

TRIMによる計算

CDB spectra at 3 keV for etched O⁺ implanted Si

Evidence of formation of V-O defects in the as-implanted sample

Increase of O contribution of V-O defects at the O-projected range

O-projected region

As-implanted - 500°C		600°C	800°C	
Vacancy Size	294 ps = V ₂	330 ps = V ₄	322 ps = V ₄	
	V ₃ O	V ₆ O ₂	V ₁₀ O ₆	
				 Si O

まとめ

・ 化学研磨とS-E測定、CDB測定、寿命測定の併用
 100nmオーダーの層別解析が可能
 表面近傍の欠陥支配領域と
 注入領域の欠陥-不純物の共存領域の区分が可能
 > He注入Si

欠陥のHeによる修飾、アニール挙動の観察
 ▶ B、P、0、H、Ar等を注入したSi
 イオン種に依存した空孔複合体の形成