A Single Shot BPM System for The SPring-8 Linac

K. Yanagida, Linear Accelerator Group, Control Group, T. Takashima and S. Sasaki, JASRI

Contents

- •Motivation, condition, target, ... for designing BPM system
- •Design of BPM and signal processor
 - •Detection frequency
 - •What is the pick up? Strip line? TM₁₁₀ Cavity?
 - •Signal processor with an analog-to-digital converter
- •Data Acquisition

The guidelines for designing the BPM system

- A bunch separation is short as 350 ps (2.856 GHz).
- A dynamic range of macropulse width is wide i. e. from 1 ns (including single bunch) beam to 1 µs beam.
- A dynamic range of beam power is also wide i. e. from 1 ns 10 mA (for the positron) beam to 1 μs 100 mA beam.
- A total resolution under machine operating condition is needed less than 10^{-3} (1 σ), e.g. σ =16 μ m@R=16mm .
- A high acquisition rate is needed more than 60 Hz (~1,000Hz at the future system?)
- A simple design and a low cost manufacturing are needed.
- Maintenance free.

Photograph of the BPM inserted in quadrupole magnet

Output of the BPM. This is a waveform of single bunch beam (500 ps/div., 1 V/div.).

Center Frequency [MHz]

Block Diagram of the Signal Processor

Photograph of the detector module

図2 タイミング・チャート

Summary

- ·Non-Dispersive Section BPM \rightarrow O.K.
- $\cdot \operatorname{Dispersive} \operatorname{Section} \operatorname{BPM} \rightarrow \operatorname{Under} \operatorname{Study}$
- · 10MHz BPF \rightarrow O.K.
- ·Log-Amp. Signal Processor \rightarrow O.K.
- Fast Data Acquisition (1kHz) by VME \rightarrow O.K.
- · Data Acquisition System (60Hz) \rightarrow Under Development