Status of Closed Orbit Correction at the KEKB

M.Tejima KEK, Oho 1-1 Tsukuba, Ibaraki 305 JAPAN

About the KEK B-factory

Parameters of KEKB (7/16/2001)

	LER	HER	
Horizontal Emittance	18	24	nm
Beam current	845	715	mA
Number of bunches	1153		
Bunch current	0.73	0.62	mA
Bunch spacing	2.4		m
Bunch trains	1		
Horizontal size at IP σ_{χ}^{*}	103	123	μm
Vertical size at IP σ_y^*	2.3	2.3	μm
Emittance ratio $\varepsilon_y / \varepsilon_x$	4.7	3.5	%
β_x^*/β_y^*	59 / 0.65	63 / 0.65	cm
beam-beam parameters §x/§y	0.064 / 0.049	0.050 / 0.030	
Beam lifetime	160 @ 800 mA	300 @ 700 mA	min.
Luminosity (Belle CSI)	4.49		/nb/s
Luminosity records per day /7 days/ month	232 / 1496 / 4788		/pb

Beam Position Monitor System

- N-type connector was adopted to transfer the beam power safely through a tough feed-through with sufficient mechanical strength and power capacity.
- Two stainless steel flames were brazed on Copper block to minimize mechanical deformation of the head.

To realize good accuracy and reliability of the measurement of beam position, the BPM electronics have features as follows:

- The principle of detecting a higher harmonic component of beam signal. (1018 MHz)
- Signal process by a common detector with relays to switch four signals (PIN diode switch)

Spectrum data of FFT process at DSP

The S/N ratio (75dB) is an equivalent to a position resolution of 2.9 μ m. In practical operation, the BPM system gives about 1.5 μ m by 4-fold averaging.

Position resolution and Measurement-speed vs. FFT points

Performance of BPM

Content	Requirement	Performance
Relative accuracy	≤ 10 µm	≤ 3 µm
Absolute accuracy	≤ 100 µm	≤ 66 µm
Speed ¹⁾	≤ 1 sec / a ring	\leq 3 sec / both ring ²⁾
Dynamic range	10 mA ~ 2.6 A	10 mA ~ 2.6 A

1) The speed is about 10msec/ a BPM when the sampling data is set 64 points for the FFT analysis.

2) Four time averaging at the FFT analysis of 2048 sampling data.

CALIBRATIONS OF THE BPM

(1) Calibration before the commissioning

Content	Accuracy of calibration	
Mapping measurement	≤ 20 µm	
Alignment of BPM heads	≤ 38 µm(hor.), ≤ 16 µm	
Attenuation of cables	≤ 50 µm	
Total	≤ 66 µm	

(2) Beam based alignment for the BPM

BPM offset from the magnetic field center of a Quadrupole magnet according to the Quad-BPM method.

- The COD is changed 3 times using a couple of Hor. And Ver. steering mag.
- The adjacent Q-mag' strength(k) is changed also 4times.
- The dx/dk is measured by whole BPM.

🏭 File Edit Window

10/02/2001 11:30:10 Help -

10/02/2001 12:54:53 Help -

10/02/2001 12:58:58 Help -

Histogram of offset measured by beam based alignment in HER

Histogram of offset measured by beam based alignment in LER

Improvement of closed orbits

LER closed orbit before offset correction

Measurement of position resolution Three-BPM method

Distribution of all BPM resolutions in HER

Distribution of all BPM resolutions in LER

Correction of ORBIT OSCILLATIONS

Measurement by EPIICS "waveform" record

- High-speed measurement: 2~120 positions/sec
- Record length:
- Start timing:

512 points

Event code

The Oscillation source is magnetic field of the proton synchrotron of 0.47Hz

Overlapping of the amplitude of 0.47 Hz component on the folded phase advance of optical

function in the LER

Trace of the amplitude of 0.47 Hz components over the phase advance of the optics function.

NATIONAL LABORATORY FOR HIGH ENERGY PHYSICS

T.

補正コイルの長さ

COIL ID Length 462 mi 906 mi 626 mi 625 mi 625 mi 625 mi 625 mi 466 mi 594 mi 464 mi 546 mi 546 mi #1-1 補正コイルの名称、仪置、及びケーブル番号 #1-2 #2-1 #2-2 Ternical Cable#1 #2-3 #3-1 #3-2 #3-3 #4 #5 Casteria Cable#5 C GERRORI QTAFOR : FULL 080 COLLAN collas Cable#3 Calculate QTJFOP.J QTAFOP.I A 012.61 38380011 cont.ei-i COIL/2-1 COLLEG-1 COIL#1-2 conists t COIL63-2 COLL2-3 COIL 0 J. 図14-B

The 3-BPM Correlation Analysis Based On the Lattice Model

Between analyzed beam position and measured position, the difference is about 10 µm.

Consistency between 3 Adjacent BPMs

Global Beta Correction(LER)

before correction

after correction

Fitting method to obtain β functions at BPMs from single-kick orbits

(by N. Akasaka)

A kick * at * produces the displacement * at the i-th BPM as

$$\begin{aligned} x_{ia} &= \frac{\sqrt{\beta_i \beta_a}}{2 \sin \pi \nu} \cos(\pi \nu - |\varphi_i - \varphi_a|) \cdot \theta_a \\ &= f_a \sqrt{\beta_i} \cos(\pi \nu - |\varphi_i - \varphi_a|) \\ f_a &= \frac{\sqrt{\beta_a}}{2 \sin \pi \nu} \theta_a \\ x_{ia} &= F_{ia} (i, \beta_i, \varphi_i, f_a, \varphi_a) \\ &= \sqrt{\beta_i} \cos \varphi_i \cdot f_a \cos(\pi \nu \pm \varphi_a) \operatorname{m} \sqrt{\beta_i} \sin \varphi_i \cdot f_a \sin(\pi \nu \pm \varphi_a) \quad \dots \quad (1) \text{ for } \sqrt{\beta_i} \cos \varphi_i \text{ and } f_a \sin \varphi_a \\ &= f_a \cos \varphi_a \cdot \sqrt{\beta_i} \cos(\pi \nu \pm \varphi_i) \pm f_a \sin \varphi_a \cdot \sqrt{\beta_i} \sin(\pi \nu \pm \varphi_i) \quad \dots \quad (2) \text{ for } f_a \cos \varphi_a \text{ and } f_a \sin \varphi_a \end{aligned}$$

 (β_i, φ_i) and (f_a, φ_a) are evaluated using (1) and (2) alternately.

Global Dispersion Correction(HER)

before correction

after correction

Δηy (before -> after) 15.0 -> 11.1 mm

Global Coupling Correction(HER)

before correction

after correction

 Δy (before -> after) 26.7 -> 19.4 μm

Orbit Length Correction with Chicane

The orbit length in the arc is adjusted with chicanes in LER.

$$\Delta p / p_0 = \sum_i x_i \eta_{xi} / \sum_i \eta_{xi}^2$$

$$\Delta l = \alpha \cdot \Delta p / p_0 \cdot C_0$$

- x_i Measured position
- η_{xi} Desgn dispersion
- α Momentum compaction factor
 C₀ Design circumference
 l Orbit length

 $\Delta l \propto \Delta \theta_{chicane}$

 θ Kick angle at chicane

Kick angle at chicane and Shift of RF frequency