Status of Closed Orbit Correction at the KEKB

M.Tejima

KEK, Oho 1-1 Tsukuba, Ibaraki 305 JAPAN

About the KEK B-factory

Parameters of KEKB (7/16/2001)

	LER	HER	
Horizontal Emittance	18	24	nm
Beam current	845	715	mA
Number of bunches	1153		
Bunch current	0.73	0.62	ma
Bunch spacing	2.4		m
Bunch trains	1		
Horizontal size at IP σ_{X}^{*}	103	123	$\mu \mathrm{m}$
Vertical size at IP σ_{y}^{*}	2.3	2.3	$\mu \mathrm{m}$
Emittance ratio $\varepsilon_{y} / \varepsilon_{x}$	4.7	3.5	\%
$\beta_{x}^{*} / \beta_{y}^{*}$	59 / 0.65	63/0.65	cm
beam-beam parameters ξ_{x} / ξ_{y}	$0.064 / 0.049$	$0.050 / 0.030$	
Beam lifetime	160 @ 800 mA	300 @ 700 mA	min.
Luminosity (Belle CSI)			/nb/s
Luminosity records per day / 7 days/month	232 / 14	/ 4788	/pb

Beam Position Monitor System

- N-type connector was adopted to transfer the beam power safely through a tough feed-through with sufficient mechanical strength and power capacity.
- Two stainless steel flames were brazed on Copper block to minimize mechanical deformation of the head.

LER arc
HER arc

BPM blocks for KEKB

A.HHER:443 bpms, LER 454 bpms A. 240 detectors and 480 RF switches distributed in Local Control Buildings

To realize good accuracy and reliability of the measurement of beam position, the BPM electronics have features as follows:

- The principle of detecting a higher harmonic component of beam signal. (1018 MHz)
- Signal process by a common detector with relays to switch four signals (PIN diode switch)

Spectrum data of FFT process at DSP

The S / N ratio (75dB) is an equivalent to a position resolution of $2.9 \mu \mathrm{~m}$. In practical operation, the BPM system gives about $1.5 \mu \mathrm{~m}$ by 4 -fold averaging.

Position resolution and Measurement-speed vs. FFT points

Performance of BPM

Content	Requirement	Performance
Relative accuracy	$\leq 10 \mu \mathrm{~m}$	$\leq 3 \mu \mathrm{~m}$
Absolute accuracy	$\leq 100 \mu \mathrm{~m}$	$\leq 66 \mu \mathrm{~m}$
Speed $^{1)}$	$\leq 1 \mathrm{sec} /$ a ring	$\leq 3 \mathrm{sec} /$ both ring $^{2)}$
Dynamic range	$10 \mathrm{~mA} \sim 2.6 \mathrm{~A}$	$10 \mathrm{~mA} \sim 2.6 \mathrm{~A}$

1) The speed is about $10 \mathrm{msec} /$ a BPM when the sampling data is set 64 points for the FFT analysis.
2) Four time averaging at the FFT analysis of 2048 sampling data.

CALIBRATIONS OF THE BPM

(1) Calibration before the commissioning

Content	Accuracy of calibration
Mapping measurement	$\leq 20 \mu \mathrm{~m}$
Alignment of BPM heads	$\leq 38 \mu \mathrm{~m}$ (hor.), $\leq 16 \mu \mathrm{~m}$
Attenuation of cables	$\leq 50 \mu \mathrm{~m}$
Total	$\leq 66 \mu \mathrm{~m}$

(2) Beam based alignment for the BPM

BPM offset from the magnetic field center of a Quadrupole magnet according to the Quad-BPM method.

- The COD is changed 3 times using a couple of Hor. And Ver. steering mag.
- The adjacent Q -mag' strength (k) is changed also 4times.
- The $\mathrm{dx} / \mathrm{dk}$ is measured by whole BPM.

/Idata1/KEKB/QuadBPM/06Jun01/QC2RPx.dat

Monitor BPM offset:

Function $=\left\langle\right.$ E \times P $\left.\left.\left[\left\langle-.5\langle s i g m)^{\wedge}-2\right\rangle\langle\langle x+\langle-c\rangle\rangle へ 2\rangle\right\rangle\right]\right\rangle$

Offset(obtained from the sample data) $=-.684652316351573 \mathrm{~mm}$

453 QC2RPY.dat

$\begin{aligned} \text { Chisquare } & =4.09933 \text { Goodnes } \\ = & 1132.37+\ldots\end{aligned}$

Function $=\langle a \operatorname{Exp}[<-.5\langle s i g m a \wedge-2\rangle\langle\langle x+\langle-c\rangle\rangle \wedge 2\rangle\rangle]\rangle$
Offset (obtained from the sample data) $=-.216917731687616 \mathrm{~mm}$

Data Fit
Monitor BPM offset: QK
Monitor BPM offset:
(1)Read, Plot\&Fit Sample DATA 1) Read, Plot\&Fit Sample DAT (a)Batch processing

Histogram of offset measured by beam based alignment in HER

Histogram of offset measured by beam based alignment in LER

Improvement of closed orbits

LER closed orbit before offset correction

Measurement of position resolution

Three-BPM method

Distribution of all BPM resolutions in HER

Distribution of all BPM resolutions in LER

Correction of ORBIT OSCILLATIONS

Measurement by EPIICS "waveform" record

- High-speed measurement:
- Record length:
- Start timing:

2~120 positions/sec
512 points
Event code

The Oscillation source is magnetic field of the proton synchrotron of 0.47 Hz

Overlapping of the amplitude of 0.47 Hz component on the folded phase advance of optical function in the LER

Trace of the amplitude of 0.47 Hz components over the phase advance of the optics function.

SATIOKAL LABORATOMY POR BIGI EMERCY PHYSKS

图14－A

が正コイルの甚を
COIL ID Length

図 $14-B$

The 3-BPM Correlation Analysis Based On the Lattice Model

Between analyzed beam position and measured position, the difference is about $10 \mu \mathrm{~m}$.

Consistency between 3 Adjacent BPMs

$$
\begin{aligned}
& \binom{x_{3}}{P_{x 3}} \longleftarrow\binom{x_{2}}{P_{x 2}} \longleftarrow m\binom{x_{1}}{P_{x 1}} \\
& M \equiv n m, x_{2}=\frac{n_{12} x_{1}+m_{12} x_{3}}{M_{12}}
\end{aligned}
$$

Global Beta Correction(LER)

before correction

after correction

Fitting method to obtain β functions at BPMs from single-kick orbits
(by N. Akasaka)
A kick * at * produces the displacement * at the i-th BPM as

$$
\begin{aligned}
x_{i a} & =\frac{\sqrt{\beta_{i} \beta_{a}}}{2 \sin \pi v} \cos \left(\pi v-\left|\varphi_{i}-\varphi_{a}\right|\right) \cdot \theta_{a} \\
& =f_{a} \sqrt{\beta_{i}} \cos \left(\pi v-\left|\varphi_{i}-\varphi_{a}\right|\right) \\
f_{a} & \equiv \frac{\sqrt{\beta_{a}}}{2 \sin \pi v} \theta_{a} \\
x_{i a} & \equiv F_{i a}\left(i, \beta_{i}, \varphi_{i}, f_{a}, \varphi_{a}\right) \\
& =\sqrt{\beta_{i}} \cos \varphi_{i} \cdot f_{a} \cos \left(\pi v \pm \varphi_{a}\right) \mathrm{m} \sqrt{\beta_{i}} \sin \varphi_{i} \cdot f_{a} \sin \left(\pi v \pm \varphi_{a}\right) \quad \ldots \ldots \text { (1) for } \sqrt{\beta_{i}} \cos \varphi_{i} \text { and } f_{a} \sin \varphi_{a} \\
& =f_{a} \cos \varphi_{a} \cdot \sqrt{\beta_{i}} \cos \left(\pi v \pm \varphi_{i}\right) \pm f_{a} \sin \varphi_{a} \cdot \sqrt{\beta_{i}} \sin \left(\pi v \pm \varphi_{i}\right) \quad \ldots \ldots . \text { (2) for } f_{a} \cos \varphi_{a} \text { and } f_{a} \sin \varphi_{a}
\end{aligned}
$$

$\left(\beta_{i}, \varphi_{i}\right)$ and $\left(f_{a}, \varphi_{a}\right)$ are evaluated using (1) and (2) alternately.

Global Dispersion Correction(HER)

before correction
after correction

$\Delta \eta y$ (before -> after) 15.0 -> 11.1 mm

Global Coupling Correction(HER)

before correction

after correction

$$
\Delta y \text { (before -> after) } \quad 26.7 \quad \text {-> } \quad 19.4 \mu \mathrm{~m}
$$

Orbit Length Correction with Chicane

The orbit length in the arc is adjusted with chicanes in LER.

$$
\begin{array}{lrl}
\Delta p / p_{0}=\sum_{i} x_{i} \eta_{x i} / \sum_{i} \eta_{x i}^{2} & x_{i} & \text { Measured position } \\
& \eta_{x i} & \text { Desgn dispersion } \\
\Delta l=\alpha \cdot \Delta p / p_{0} \cdot C_{0} & \alpha & \text { Momentum compaction factor } \\
& C_{0} & \begin{array}{l}
\text { Design circumference } \\
\\
l
\end{array} \\
& & \text { Orbit length } \\
\Delta l \propto \Delta \theta_{\text {chicane }} & \theta & \text { Kick angle at chicane }
\end{array}
$$

Kick angle at chicane and Shift of RF frequency

