Workshop on Stability of Beam Orbit in Accelerators:

Brownian Ground Motion And Dynamic Alignment of the Accelerator

Shigeru Takeda

KEK, High Energy Accelerator Research Organization

- Power Spectrum Density and Coherence
- Slow Ground Motion and Geology
- Slow Ground Motion and Excavation Methods

		X-band	C-band	
Beam Energy Entrance/Exit	E0/E1	10/500	10/500	GeV
Particles/bunch	Ν	0.8	1.0	1010
Invariant Emittance	$\boldsymbol{\varepsilon}_{N_y}$	30	30	nm
Bunch length	σ_{z}	80	200	μm
β at entrance	${m eta}_0$	4	4	m
Rf frequency	f	11.4	5.7	GHz
Accel. gradient	dE/ds	45	32	MeV/m
Iris radius/wavelength	a / λ	0.16	0.14	
ATL coefficient	Α	1	1	nm²/s/m
Stable time for $\in =0.1$	t	3	24	hours

Typical Parameters of Linear Collider

Brownian Ground Motion and Dynamic Alignment of the Accelerator

Sensors for Studies

(1)

Empirical Continuous Power Spectrum Density;

$$P(f) = \frac{K}{4\pi^2 f^2 (f_0^2 + f^2)},$$

 f_0 : 0.1Hz - 0.01Hz In the hard rock region: $f_0 \approx 0.1$ Hz $f = f_0 P(f) = K/f^2$

Brownian motion of rocks becomes dominant *K* strongly depends on the site

The ATL model:

Formulation using an auto-correlation function $\langle y(t+\tau)y(t) \rangle$

$$\Delta y(\tau)^2 = 2 < y(t)^2 > -2 < y(t+\tau)y(t) > = A \cdot L \cdot \tau.$$
(2)

< X >: an ensamble average

Definition of a Power Spectrum;

$$P(f) = \int_{-\infty}^{\infty} \langle y(t+\tau)y(t) \rangle e^{-2\pi i f \tau} dt d\tau , \qquad (3)$$

$$A \cdot L \cdot \tau = 4 \int_{-\infty}^{\infty} P(f) \sin^2(\pi f \tau) df .$$
 (4)

 $[f = f_0]$

 $4\int_{-\infty}^{\infty} P(f)\sin^2(\pi f\tau)df = K \cdot \tau$ (5)

Power Spectrum of ATL model as,

$$P(f) = \frac{A \cdot L}{4\pi^2 f^2}.$$
(6)

[Actual Experiment]

$$P(f) = \frac{K}{4\pi^2 f^2 + (1/\tau_{\rm max})^2} , \qquad (7)$$

$$1/\tau_{\rm max}$$
 : cutoff frequency

The Integration of Equation (5);

$$4\int_{-\infty}^{\infty} P(f)\sin^2(\pi f\tau)df = K\tau_{\max}\left(1 - e^{-\tau/\tau_{\max}}\right).$$
(8)

$$\Delta y(\tau)^2 = A \cdot L \cdot \tau_{\max} \left(1 - e^{-\tau/\tau_{\max}} \right). \tag{9}$$

Recently, many accelerator physicists use ATL model for their accelerator simulation because of simplification of the calculation. But we have to take account of **applicable limitations in the light of coherency of the ground motion spectrum.**

No	Site Name	A (nm²/m/sec)	Geology of the Site
1	Tunnel of KEKB	4.0E+01	Clay and Gravel
2	Rokkoh-1	3.6E+01	Granite (near Fault)
3	Rokkoh-2	3.3E+01	Granite
4	Miyazaki	1.5E+01	Diorite
5	Spring-8	8.0E-01	Granite
6	Kamaishi-1	1.4E-01	Granite (Crack and Water)
7	Kamaishi-2	5.7E-02	Granite
8	Sazare	5.0E-02	Green Schist
9	Esashi-1	5.7E-03	Granite (Floating Stone)
10	Esashi-2	2.0E-03	Granite

ATL COEFFICIENT in JAPAN

Geological Map of Japan and the Related Sites for ATL Table. Described numbers are the same in figures and Table.

Coherence-1

Ground motion in the noisy site (KEK). Coherence between two points at a distance of 48 m. Power spectra for the two points are the same. Incoherent spectrum is given by the equation shown in the figure. A big bump spectrum, around 0.2 Hz, corresponds to the ocean swell. The incoherent spectrum around 3 Hz comes from traffic noises. This incoherent vibration gives an amplitude of 83 nm. That is, the tunnel in KEK should have a depth of 900 m, providing we want the amplitude of 1 nm.

The time series data on the vertical ground motions observed at three points being 14 m apart between one another.

Coherence in the Granite Tunnel Having a Floating Lumped Rock.

Except the #1 lumped rock position, we get good coherence.

#1 shows no earth-tide spectrum. *ATL* coefficient in this point is a little bad as shown in the previous *ATL* Table.

Brownian Ground Motion and Dynamic Alignment of the Accelerator

Kamaishi

Shigeru Takeda

9903

frequency (Hz)

Brownian Ground Motion and Dynamic Alignment of the Accelerator

Shigeru Takeda

Coherence-2

Brownian Ground Motion and Dynamic Alignment of the Accelerator What Hap

What Happen in the Tidal Frequency

Conclusion

Detail drawing of the vertical active mover.

Brownian Ground Motion and Dynamic Alignment of the Accelerator

Conclusion

架台の共振点:

- X 軸方向: 5.8Hz、12.5Hz、16Hz、29Hz、 Y 軸方向: 12~16Hzのブロード共振、30Hz、90Hz、
- Z 軸方向: 2.3Hz、5.6Hz、8Hz、80Hz、

ガーダーのクリープ特性と高剛性化

- 加速管: 長さ 1.8m
 - **重量** 250kg
 - 使用数 8,000 台
 - **設置精度** 30 µ m

ガーダー及び調整機構は3µm以下の確度で再現性

コンクリートパイルの鋼板巻きの低価格ガーダーは、そのクリープ特性の評価 が製作条件に強く依存して非常に困難であることが判明 強く伸張したピアノ線材 (PC 鋼棒)をコンクリートで固めた円柱架台 クリープ歪み進行過程の計算:クリープの進行が4µm 以下になるのが製作後 約一年掛かる。

<u>表 - 1 ガーダー材料の諸元</u>

材料	断面積	断面2次モーメント	ヤング	単位長重
	(cm ²)	(cm^4)	率	皇
			(ton/cm ²)	(kg/m)
PC 杭:600 , t=90	1,473	493,415	410	375
角形コラム:600 , t=16	363	203,000	2,100	285
RC:600	3,600	1,080,000	210	864

PC 杭は肉厚 90mm の円筒状とし、9 の PC 鋼棒 12 本を一様に配置した。

|--|

モード次数	1次	2次	3次	4次	5次
モード形状	Y	Z	х	弾性モード	弾性モード
PC 杭	5.0	5.8	7.0	33.8	228.0
角形コラム	5.0	5.8	7.0	51.6	355.9
RC	5.0	5.9	7.1	26.7	175.7

以上から、RC 杭方式の代わりに、PC 杭を使う方が LC のガーダーとして有効であることが分かった。残る問題で解決せねばならないことは、

1) PC 杭方式の方が RC 杭方式に比べて、製作費が3.5 倍になること、

2) 5 HzのY 方向振動に対するダンパーが必要なこと、

3)ガーダーの重量が3トンと重くなり、その分能動駆動機構の負荷が大きくなる。

Shigeru Takeda

Conclusion

- It is essential to search the site being $A < 1 \text{ nm}^2/\text{m/sec}$ for the long term stability of the alignment.
- TBM is the best solution for cutting the tunnel of LC.
- The separated tunnel is preferable to suppress the noises in the accelerator tunnel caused by the accelerator facility.
- We have to pay attention to local fluctuation of the *ATL* coefficient and the coherence around the betatron wave length for the construction of the long scale LC.