Beam-Stability Issues in the KEKB Injector Linac

T. Suwada

Accelerator Laboratory,

High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

KEKB Accelerator Complex

Layout of the KEKB Injector Linac

Operation Log of the KEKB e⁻/e⁺ Beam Currents

Typical Beam Parameters for the KEKB Injection

Parameters	e ⁻ @BT	e^+ @BT	e^{-}/e^{+}
Energy [GeV]	8.0	3.5	3.7 ¹⁾
Charge [nC]	$0.8/1^{*}$	$0.4/0.6^{*}$	$8.0^{1)}$
$\Delta E/E [\%@1\sigma]$	0.05	0.15	0.5^{2}
$\gamma \epsilon_x / \gamma \epsilon_y \ [mm@1\sigma]$	0.31/0.31	2.4/2.0	$3.5/1.8^{3}$
Injection Rate	4	1.8	
[mA/s]@50 Hz	(>95%)	(>95%)	

The symbol "*" shows the parameters measured at the end of linac, and subscripts 1), 2) and 3) depict the parameters at the positron target, at the center of the J-arc line, and at the end of the sector B (E=1.7 GeV), respectively.

KEKB Operation

- *Stable high injection* rates were performed by
- (1) *dedicated beam* and *rf feedback systems*, and
- (2) daily monitoring of the *optics matching* and *beam emittances*, and the *energy spread of the beams* by wire scanners, and fine injection tuning.
- Beam and rf feedback systems have been stably operated
- (1) for *beam orbits* and *beam energy*, and
- (2) for the *pre-injector*.

Schematic layout of the pre-injector

Element	Repetition or	-	Voltage or
	Frequency	period	Power
Grid pulser	1~50 Hz	-	450~800 V
Gun	50 Hz	-	200 kV
25 th SHB1 (standing wave)	114 MHz	8.75 ns	11 kW
5 th SHB2 (standing wave)	571 MHz	1.75 ns	7 kW
Prebuncher (travelling wave)	2856 MHz	350 ps	1 MW
Buncher (travelling wave)	2856 MHz	350 ps	23 MW
Accelerating sections (travelling wave)	2856 MHz	350 ps	12 MW x 2
Common frequency of linac/KEKB rings	10.385 MHz	96.289 ns	-

Workshop on Beam Stabilization@SPring-8, Harima, October 15-16, 2001

7

Pre-Injector System: Feedback System

Pre-Injector System: Temperature Variation in Gun Room

Pre-Injector System: Phase Stability of SHB1, 2 & Buncher

Pre-Injector System: Variation of Grid-Pulse Timing

Pre-Injector System: Variation of Beam Timing

Control & RF Feedback System of the Gun Beam

	Tolerance	Stability	FB	Remraks
Gun High Voltage [%]	±0.38	~0.05	ON	200kV
Gun Beam Timing [ps]	±45	20	ON	
SHB1 RF Power [%]	-	~1	ON	114.2MHz/11kW
SHB1 Phase [deg.]	±1.1	0.5	-	
SHB2 RF Power[%]	-	~1	ON	571.2MHz/7kW
SHB2 Phase[deg.]	±1.3	1.0	-	
Buncher Power [%]	±0.47	~1	-	2856MHz/~23MW
Buncher Phase [deg.]	±1.7	±1.0	-	

Optical-Transition Monitor

Bunch Profile Measurement Using OTR Monitor

RF Stability:Main Drive System

メインドライブシステム

Stability of RF: Trend Graphs

Phase Stability of 114,571 & 2856MHz Master Oscillators

Stability of RF: Monitor System

RF MONITOR SYSTEM

Stability of RF:Trend Graphs

Workshop on Beam Stabilization@SPring-8, Harima, October 15-16, 2001

19

Beam Feedback Systems

Typical e⁺ Beam Orbits & Charge for the KEKB Operation

Beam Orbit & Energy Stability: Beam-Position Monitor

Beam Energy Stability: Control Panel

- R0 Energy Feedback				
File	R0 Energy Feedback		17:48 v1.6.2	
get command (source) lindex [set sptem] acquisition interval (sec) 1. current source 1.04 avarage count 2 averaged source 0.645 minimum -12 maximum 15 Satisfied	loop interval (count) 1 offset 0 difference 0.645 gain -0.001 feedback -0.000645	get command (condition) lindex \$sptemp 2 minimum 0.2 value 6.47 Satisfied	get command (target) energy2_get r0 current target 1.61849259611 new target 1.61794759611 minimum 1.5 maximum 1.5 Satisfied put command (output) energy2_set r0	
Start		Stop	Beam Condition	

Beam Energy Stability: Trend graphs

Beam Orbit Stability: Principle of Feedback

Other Feedback Loops

Simple Orbit Feedback

Monitor: Weighed Average of BPM's over 1 Betatron Wavelength Tuner: Two Steerings with 90-degree phase advance (Difficult to Predict Orbit Because of Wake Fields)

Beam Orbit Stability: Trend Graphs

Beam Optics Stability: Wire Scanner

Beam Optics Stability:Measurement Using Four Successive WSs

Beam Optics Stability: Optics Matching

Beam Optics Stability: Daily-Logged Parameters

Beam Optics Stability: Daily-Logged Parameters

Energy Spread Stability: Energy Spread Monitor by WSs

Energy Spread Stability: Daily-Logged Parameters

Energy Spread Stability: Daily-Logged Parameters

Beam Trajectory Jitter Analysis (Jitter Emittance)

Beam Trajectory Jitter Analysis (Blow up of Jitter Emittance)

Beam Trajectory Jitter Analysis (βFunction Measurement)

Beam Trajectory Jitter Analysis (β Mismatch Parameter)

Workshop on Beam Stabilization@SPring-8, Harima, October 15-16, 2001

40

Beam-Energy Stability: Step Variation Detection Algorism Using an E-Filter

Conclusions

♦ Daily Operation

It has been almost established for the KEKB by

- •Frequent beam diagnosis and check,
- •Dedicated beam and rf feedback systems, and
- •Several-times/month check of machine and instrumentation.
- Systematic Evaluation on the Beam Stability Issues
- It is strongly required to specify origins causing the beam instabilities which need to be investigated by

•three factors, that is, frequency and amplitude of variation, and location.

Strategic Scheme for the Beam Stability Issues

Strategic Scheme for the Beam Stability Issues (cont.)

Several Plans in Progress

♦ More Refined Beam Feedback System

•Global orbit feedback/Continuously Controlled orbit Correction(*CCC*)

•Refined energy feedback taking into account the beam optics

♦ More Dedicated Beam Monitors

•Nondestructive energy-spread monitor(ESM)

•Pulse-to-pulse data-acquisition(DAQ) and detection system for BPMs and ESMs

More Dedicated Control System

•New DAQ scheme synchronously measuring all data from the monitor, rf, pulsed devices and facility environments.