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1 Introduction

Robinson instabilities in storage rings are driven by
a responce of acceleration cavity voltage to synchrotron
motion of a beam. Feed-back loops that control am-
plitude and phase of cavity voltage modify their re-
ponse through beam-loading. We analyzed the lineal-
ized model of this system and obtained growth-rate and
frequency shift of the instability under such feed-back
loops. In following discusstion, We define phasers Ã of
RF frequency ωRF ; A(t) = ÃeiωRF t and phasers Ă of
synchrotron frequency ωs ; A(t) = Ăeiωst .

2 Response of Cavity Voltage to Current

The cavity voltage is driven by a beam current ib(t)
and a generator current ig(t) produced by external RF
source. We assume that these current has amplitude
and phase oscillation of frequency ω and these drives
the cavity voltage oscillation and the amplitude of these
oscillation are small enough for us to linearlize the sys-
tem.

We divide the cavity voltage to the static part and
oscillating part. The pasers of them are

Ṽc(t) = Ṽc0 +∆Ṽc(t), Ṽc0 = Vc0e
iφc0 (1)

Ṽb(t) = Ṽb0 +∆Ṽb(t), Ṽb0 = Z(ωRF )̃ib0 (2)

Ṽg(t) = Ṽg0 +∆Ṽg(t), Ṽg0 = Z(ωRF )̃ig0 (3)

where Ṽc = Ṽb+ Ṽg is the phaser of the cavity voltage, Ṽb

is that induced by beam current and Ṽg is that induced
by generator current, and Z is the impedance of a cavity
and ĩb0 = ib0e

iϕ0 and ĩg0 = ig0e
iθ0 are the static part of

phasers of the beam current and the generator current,
respectively.

The normalized variation of the phaser of the cav-
ity voltage, with small and slow amplitude and phase
oscillation of frequency ω � ωs , can be expressed as

∆Ṽc(t)
Ṽc0

=
Ṽc(t)− Ṽc0

Ṽc0

=
[
1 + k̂ cos (ωt+ αk)

]
ei[φ̂ cos(ωt+αφ)] − 1

� k̂ cos (ωt+ αk) + iφ̂ cos (ωt+ αφ)

=
1
2

(
k̆ + iφ̆

)
eiωt +

1
2

(
k̆∗ + iφ̆∗

)
e−iωt (4)

where k̆ = k̂eαk , φ̆ = φ̂eαφ and we assume |k̂|, |φ̂|,
|ω/ωRF | << 1.

Cavity Voltage Oscillation by Beam Current
The one source of the osillation of the cavity voltage

is the phase osicllation of beam current produced by the
synchrotron motion of bunches.

We will ignore the amplitude modulation of the
beam current produced by unequal filling of bunchs in a
ring because its frequency spectrum is harmonics of rev-
olution frequency and is much higher than synchrotron
frequency and we will assume that the frequecy response
of the feed-back loop does not exenend to such high fre-
quency.

The beam current with the phase osicllation
ϕ̂ cos (ωt+ αϕ) is

ib(t) = ib0e
i[ϕ0+ϕ̂ cos(ωt+αϕ)]eiωRF t

� ib0e
iϕ0 [1 + iϕ̂ cos (ωt+ αϕ)] eiωRF t (5)

where we used the assumption Eq. (??). The variation
of the beam current ∆ib(t) = ib(t)− ib0(t) presented by
ϕ̆ = ϕ̂eiαϕ is

∆ib(t) = ĩb0 i
1
2

[
ϕ̆eiω+

RF
t + ϕ̆∗eiω−

RF
t
]

(6)

where ω+
RF = ωRF + ω and ω−

RF = ωRF − ω .
The cavity voltage induced by ∆ib(t) is

∆Vb(t) = ĩb0 i
1
2

[
ϕ̆Z+e

iω+
RF

t + ϕ̆∗Z−eiω−
RF

t
]

(7)

and its phaser is

∆Ṽb(t) =
1
2
ĩb0 i

[
ϕ̆Z+e

iωt + ϕ̆∗Z−e−iωt
]

(8)

where Z+ = Z(ω+
RF ) and Z− = Z(ω−

RF ).

Cavity Voltage Oscillation by Generator Current
The other source of the cavity voltage oscillation is

the generator current produced by external RF source.
We set the generator current with phase and amplitude
oscillation as

ig(t) = ig0 [1 + ĝ cos (ωt+ αg)] ei[ωRF t+θ0+θ̂ cos(ωt+αθ)]

� ig0(t)
[
1 + ĝ cos (ωt+ αg) + iθ̂ cos (ωt+ αθ)

]
. The variation ∆ig(t) = ig(t) − ig0(t) presented by ğ

and θ̆ is

∆ig(t) =
1
2
ĩg0

[(
ğ + iθ̆

)
eiω+

RF
t +
(
ğ∗ + iθ̆∗

)
eiω−

RF
t
]
.

(9)

Cavity Response to Beam and Generator Currnet
The cavity voltage induced by ∆ig(t) is

∆Vg(t) = ĩg0

[(
ğ + iθ̆

)
Z+e

iω+
RF

t +
(
ğ∗ + iθ̆∗

)
Z−eiω−

RF
t
]

(10)
and its phaser is

∆Ṽg = ĩg0

[(
ğ + iθ̆

)
Z+e

iωt +
(
ğ∗ + iθ̆∗

)
Z−e−iωt

]
.

(11)



The cavity voltage amplitude variation induced by
beam current and generator current, ∆Ṽc(t) = ∆Ṽg(t)+
∆Ṽb(t), is

∆Ṽc(t)
Ṽc0

=
1

2Ṽc0

[̃
ig0

(
ğ + iθ̆

)
+ i ĩb0ϕ̆

]
Z+e

iωt

+
1

2Ṽc0

[̃
ig0

(
ğ∗ + iθ̆∗

)
+ i ĩb0ϕ̆

∗
]
Z−e−iωt (12)

Comparing above equation Eq. (12) and the equation
Eq. (4), we have

k̆ + iφ̆ =
1
Ṽc0

[̃
ig0

(
ğ + iθ̆

)
+ i ĩb0ϕ̆

]
Z+ (13)

k̆∗ + iφ̆∗ =
1
Ṽc0

[̃
ig0

(
ğ∗ + iθ̆∗

)
+ i ĩb0ϕ̆

∗
]
Z−(14)

Solving above equations for k̆ and ϕ̆, we have a re-
sponse of a cavity voltage, ă, to the phase oscillatin of
the beam current, ăb, and to the amplitude and phase
oscillation of the generator current,ăg, in matrix form;

ă = ăg + ăb, ăg = Rğ, ăb = Cϕ̆ (15)

where ϕ̆ = (1, 1)T ϕ̆,

ă =
(

k̆

φ̆

)
, ăg =

(
k̆g

φ̆g

)
, ăb =

(
k̆b

φ̆b

)
, ğ =

(
ğ

θ̆

)
(16)

and

R =
(

r+ r−
−r− r+

)
, C =

(
c− 0
0 c+

)
(17)

r± =
ig0

2Vc0

(
ei(θ0−φc0)Z+ ± e−i(θ0−φc0)Z∗

−
)
(18)

c± =
ib0
2Vc0

(
e−iφc0Z+ ± eiφc0Z∗

−
)
. (19)

3 Responce of Beam to Cavity Voltage

The discussion above is focused on voltages in a sin-
gle cell of a cavity. Next, we will obtain the responce of
the beam current to the acceleration voltage which was
produced by many cavities in RF stations around the
ring.

We assume that the number of RF stations is Ns and
each station has one RF source and has two independent
feed-back loops, one for the cavity voltage amplitude and
one for phase. The parameters of cavities at each station
are assumed to be the same and the feed-back loop con-
trols the total voltage of them through controlling the
RF-source. The parameters of each stations are specified
by suffix i.

To treat multiple RF stations, we extend vectors, ă,
ăb and ăg, and matrixes, C and R, as

v =




ă1

...
ăNs


 , M =




M1 0. . .
0 MNs


 (20)

where v̆i andMi are a vector and a matrix of i-th station.
We define energy shift δ = E−E0

E0
and phase ϕ of

bunches of the beam ϕ = ωRF τ where τ is the time
advance relative to the reference particle. The equation
for synchrotron osillation of a bunch is

dϕ

dt
= −ωRF η δ (21)

dδ

dt
=

Ns∑
s=1

eVc0,i (1 + ki)
T0E0

cos (−ϕ+ φi + φc0,i)

− U0

T0E0
− 2

U0

T0E0
δ

� 1
ωRF η

2
τs

dϕ

dt
+

(
Ns∑
s=1

eVc0,i

T0E0
sinφc0,i

)
ϕ

+
Ns∑
s=1

eVc0,i

T0E0
sinφc0,i

(
ki

tanφc0,i
− φi

)
(22)

where ki = �[k̆ie
iαk,i ] , φi = �[φ̆ie

iαφ,i ] , η is momentum
compaction factor of the ring , U0, E0 and T0 are the
energy loss of a particle during one turn, the reference
energy and the revolution period of the ring ,respectively.
and we set 1/τs = U0/(T0E0) and

Ns∑
s=1

eVc0,i

T0E0
cosφc0,i =

U0

T0E0
. (23)

where Ṽc0,i = Vc0,i e
iφc0,i is the phaser of cavity voltage

of the i-th station.
From Eq. (21) and Eq. (22), we have

d2ϕ

dt2
+

2
τs

dϕ

dt
+ ωs0

2ϕ = −
Ns∑
s=1

ωs,i
2

(
ki

tanφc0,i
− φi

)
(24)

where ωs,i
2 = ωRF η

T0E0
eVc0,i sinφc0,i and ωs0

2 =∑Ns

s=1 ωs,i
2.

From Eq. (15)-Eq. (29) and using phasers, Eq. (24)
is

(ω − ω+) (ω − ω−) ϕ̆ =
Ns∑
s=1

ωs,i
2

(
k̆g,i

tanφc0,i
− φ̆g,i

)

(25)
where ω+, ω− are the solutions of the equation;

(
ω2
± − 2

τs
iω± − ωs0

2

)
−

Ns∑
s=1

ωs,i
2

(
c−i

tanφc0,i
− c+i

)
= 0.

(26)
Eq. (26) is the equation for the system without genera-
tor current variation ,k̆g,i = φ̆g,i = 0 ,which is the case
without feed-back loops and ω+, ω− show synchrotron
frequency and growth rate of usual Robinson instabil-
ity [1]. ω− is related to ω+ as ω− = −�[ω+] + i�[ω−]
because the original equation Eq. (24) is real.

Eq. (25) can be presented as matrix form,

ϕ̆ =
I

(ω − ω+) (ω − ω−)
T ăg. (27)



where T is the matrix of rank(T ) = 1,

T =




1
tan φc0,1

−1 ... 1
tan φc0,Ns

−1
...

...
...

...
...

1
tan φc0,1

−1 ... 1
tan φc0,Ns

−1


 . (28)

Now we have the response of the phase oscillation of
the beam current to the cavity voltage.

4 Generator Current driven by Feed-Back Loop

Combining Eq. (27) and Eq. (15), we have

ă =
[
I +

I

(ω − ω+) (ω − ω−)
CT

]
Rğ. (29)

The feed-back loop of i-th station detect ăi and the
difference from input signal, ăin,i, is filtered and am-
plified with a filter circuit of the impedance, Zfk,i and
Zfφ,i, and amplifiers of the open gain, G0k,i and G0φ,i ,
for amplitude and phase loop, respectively, as shown in
Fig. 1 . The resulting signal is the amplitude and the
phase oscillation of the generator current,

ğ = G0Zf (ăin − ă) (30)

where G0 and Zf are diagonal matrix because feed-back
loops are independent each other and they are

G0 =




G0,1 0.. .
0 G0,Ns


 , G0,i =

(
G0k,i 0
0 G0φ,i

)

(31)

Zf =




Zf,1 0.. .
0 Zf,Ns


 , Zf,i =

(
Zfk,i 0
0 Zfφ,i

)
.

(32)
Solving Eq. (29) with Eq. (30) and Eq. (15) for ă,

we obtain

[(ω − ω+) (ω − ω−) (I +RG0Zf ) + CTRG0Zf ] ă =
[(ω − ω+) (ω − ω−) I + CT ]RG0Zf ăin. (33)

5 Response to Input signal

From Eq. (33), we have

ă =
[(ω − ω+) (ω − ω−) (I +RG0Zf ) + CTRG0Zf ]

−1

× [(ω − ω+) (ω − ω−) I + CT ]RG0Zf ăin. (34)

To get frequency response of the system, we set a
vector ăin and frequency ω.

6 Growth Rate

The growth rate can be obtained by solving the
equation Eq. (33) for ω with ăin = 0. For non-trivial

ag = Rg

stored beam

ain

Zf G0

g = G0 Zf (ain - a)

R cavity

a = ag + ab

ain - a

ϕ

a =  ab  +  ag

ab = Cϕ

Fig. 1 Diagram of cavity voltage feed-back loop. ˘for
phasers are omitted here.

solution, ă �= 0, we have an eigenvalue equation∣∣∣(ω − ω+) (ω − ω−) I + (I +RG0Zf )
−1 CTRG0Zf

∣∣∣ = 0 .

(35)
Because rank(T ) = 1 by the definition Eq. (28),

there is only one non-zero eigenvalue for above equation.
Thus the eigenvalue is easily obtained by taking trace of
the matrix which is the sum of eigenvalues and is

(ω − ω+) (ω − ω−) = −T r
[
(I +RG0Zf )

−1
CTRG0Zf

]
.

(36)
If we set G0 = 0 or Zf = 0, which is the case of

no feed-back loop, the right-hand side of the Eq. (36) is
zero and we have the solutions ω = ω+, ω− as expected.

When solving Eq. (36), we have to care that param-
eters in left-hand side of Eq. (36) such as C, R, G0, Zf

may have frequency dependence.

7 Conclusion

The effect of the cavity voltage feed-back loop on the
robinson instability was analized and growth rate and
synchrotron frequency shift is obtained. It shows that
,in actual machine which has slower synchrotron oscilla-
tion frequency and large beam loading like the SPring-
8 storage ring, the frequency response of the feed-back
loop must be slower enough to suppress gain at the syn-
chrotron osicllation frequency to get stable operation at
high current.
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